Residue currents with prescribed annihilator ideals

Mats Andersson; Elizabeth Wulcan

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 6, page 985-1007
  • ISSN: 0012-9593

How to cite

top

Andersson, Mats, and Wulcan, Elizabeth. "Residue currents with prescribed annihilator ideals." Annales scientifiques de l'École Normale Supérieure 40.6 (2007): 985-1007. <http://eudml.org/doc/82732>.

@article{Andersson2007,
author = {Andersson, Mats, Wulcan, Elizabeth},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {homogeneous residue currents; annihilators; Coleff-Herrera currents; Noetherian residue currents; Cohen-Macaulay ideals; modules; division and interpolation formulas; generically exact complexes; polynomial ideals},
language = {eng},
number = {6},
pages = {985-1007},
publisher = {Elsevier},
title = {Residue currents with prescribed annihilator ideals},
url = {http://eudml.org/doc/82732},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Andersson, Mats
AU - Wulcan, Elizabeth
TI - Residue currents with prescribed annihilator ideals
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 6
SP - 985
EP - 1007
LA - eng
KW - homogeneous residue currents; annihilators; Coleff-Herrera currents; Noetherian residue currents; Cohen-Macaulay ideals; modules; division and interpolation formulas; generically exact complexes; polynomial ideals
UR - http://eudml.org/doc/82732
ER -

References

top
  1. [1] Andersson M., Residue currents and ideals of holomorphic functions, Bull. Sci. Math.128 (2004) 481-512. Zbl1086.32005MR2074610
  2. [2] Andersson M., Ideals of smooth functions and residue currents, J. Funct. Anal.212 (1) (2004) 76-88. Zbl1056.32006MR2065238
  3. [3] Andersson M., The membership problem for polynomial ideals in terms of residue currents, Ann. Inst. Fourier56 (2006) 101-119. Zbl1092.32002MR2228682
  4. [4] Andersson M., Residue currents of holomorphic morphisms, J. reine angew. Math.596 (2006) 215-234. Zbl1106.32005MR2254813
  5. [5] Andersson M., Integral representation with weights II, division and interpolation formulas, Math. Z.254 (2006) 315-332. Zbl1104.32002MR2262705
  6. [6] Bayer D., Mumford D., What can be computed in algebraic geometry?, in: Computational Algebraic Geometry and Commutative Algebra, Cortona, 1991, Sympos. Math., vol. XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1-48. Zbl0846.13017MR1253986
  7. [7] Bayer D., Peeva I., Sturmfels B., Monomial resolutions, Math. Res. Lett.5 (1–2) (1998) 31-46. Zbl0909.13010
  8. [8] Bayer D., Stillman M., A criterion for detecting m-regularity, Invent. Math.87 (1987) 1-11. Zbl0625.13003MR862710
  9. [9] Bayer D., Sturmfels B., Cellular resolutions of monomial modules, J. reine angew. Math.502 (1998) 123-140. Zbl0909.13011MR1647559
  10. [10] Berenstein C., Yger A., About L. Ehrenpreis fundamental principle, in: Geometrical and Algebraical Aspects in Several Complex Variables, Cetraro, 1989, Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 47-61. Zbl1112.32300MR1222206
  11. [11] Berenstein C., Yger A., Effective Bezout identities in Q [ z 1 , , z n ] , Acta Math.166 (1991) 69-120. Zbl0724.32002MR1088983
  12. [12] Berenstein C., Gay R., Vidras A., Yger A., Residue Currents and Bézout Identities, Birkhäuser, 1993. Zbl0802.32001MR1249478
  13. [13] Berndtsson B., A formula for division and interpolation, Math. Ann.263 (1983). Zbl0499.32013MR707239
  14. [14] Berndtsson B., Passare M., Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal.84 (1989). Zbl0686.46031MR1001466
  15. [15] Björk J.-E., Residues and D -modules, in: The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605-651. Zbl1069.32001MR2077588
  16. [16] Coleff N.R., Herrera M.E., Les courants résiduels associés à une forme méromorphe, Lect. Notes in Math., vol. 633, Springer-Verlag, Berlin–Heidelberg–New York, 1978. Zbl0371.32007
  17. [17] Demailly J.P., Complex Analytic and Differential Geometry Monograph Grenoble, 1997. 
  18. [18] Dickenstein A., Sessa C., Canonical representatives in moderate cohomology, Invent. Math.80 (1985) 417-434. Zbl0556.32005MR791667
  19. [19] Dickenstein A., Gay R., Sessa C., Yger A., Analytic functionals annihilated by ideals, Manuscripta Math.90 (1996) 175-223. Zbl0871.32009MR1391209
  20. [20] Ehrenpreis L., Fourier Analysis in Several Complex Variables, Pure and Applied Mathematics, vol. XVII, Wiley–Interscience Publishers. A Division of John Wiley and Sons, New York–London–Sydney, 1970. Zbl0195.10401
  21. [21] Eisenbud D., Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. Zbl0819.13001MR1322960
  22. [22] Eisenbud D., The Geometry of Syzygies. A Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. Zbl1066.14001MR2103875
  23. [23] Griffiths Ph., Harris J., Principles of Algebraic Geometry, John Wiley and Sons, 1978. Zbl0408.14001MR507725
  24. [24] Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall Inc., Englewood Cliffs, NJ, 1965. Zbl0141.08601MR180696
  25. [25] Hörmander L., An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, vol. 7, Second revised edition, North-Holland Publishing Co., American Elsevier Publishing Co., Inc., Amsterdam–London/New York, 1973. Zbl0271.32001
  26. [26] Hörmander L., The Analysis of Linear Partial Differential Operators I, second ed., Springer-Verlag, 1990. Zbl0712.35001
  27. [27] Mayr E., Mayer A., The complexity of the word problem for commutative semigroups and polynomial ideals, Adv. Math.46 (1982) 305-329. Zbl0506.03007MR683204
  28. [28] Miller E., Sturmfels B., Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. Zbl1066.13001MR2110098
  29. [29] Nöther M., Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. (1873) 351-359. MR1509826JFM05.0348.02
  30. [30] Palamodov V.P., Linear Differential Operators with Constant Coefficients, Translated from the Russian by A.A. Brown, Die Grundlehren der mathematischen Wissenschaften, vol. 168, Springer-Verlag, New York–Berlin, 1970. Zbl0191.43401
  31. [31] Passare M., Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand.62 (1988) 75-152. Zbl0633.32005MR961584
  32. [32] Yger A., Formules de division et prolongement méromorphe, in: Séminaire d'Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986, Lecture Notes in Math., vol. 1295, Springer, Berlin, 1987, pp. 226-283. Zbl0632.32010
  33. [33] Passare M., Tsikh A., Yger A., Residue currents of the Bochner–Martinelli type, Publ. Mat.44 (2000) 85-117. Zbl0964.32003
  34. [34] Quillen D., Superconnections and the Chern character, Topology24 (1985) 89-95. Zbl0569.58030MR790678
  35. [35] Shiffman B., Degree bounds for the division problem in polynomial ideals, Michigan Math. J.36 (1989) 163-171. Zbl0691.12010MR1000520
  36. [36] Wulcan E., Residue currents of monomial ideals, Indiana Univ. J.56 (2007) 36-388. Zbl1120.32004MR2305939
  37. [37] Wulcan E., Residue currents and their annihilator ideals, Thesis Gothenburg, 2007. Zbl1143.32003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.