Continuous Measures on Homogenous Spaces
Michael Björklund[1]; Alexander Fish[2]
- [1] Royal Institute of Technology (KTH) Department of Mathematics Lindstedtsvägen 25 S-100 44 Stockholm (Suède)
- [2] The Ohio State University Department of Mathematics 231 W. 18-th Ave., Columbus OH 43210 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2169-2174
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBjörklund, Michael, and Fish, Alexander. "Continuous Measures on Homogenous Spaces." Annales de l’institut Fourier 59.6 (2009): 2169-2174. <http://eudml.org/doc/10451>.
@article{Björklund2009,
abstract = {In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.},
affiliation = {Royal Institute of Technology (KTH) Department of Mathematics Lindstedtsvägen 25 S-100 44 Stockholm (Suède); The Ohio State University Department of Mathematics 231 W. 18-th Ave., Columbus OH 43210 (USA)},
author = {Björklund, Michael, Fish, Alexander},
journal = {Annales de l’institut Fourier},
keywords = {Probability measures on groups; heat kernels; Probabilities on homogeneous spaces; heat kernel; continuous measures; N. Wiener's criterion},
language = {eng},
number = {6},
pages = {2169-2174},
publisher = {Association des Annales de l’institut Fourier},
title = {Continuous Measures on Homogenous Spaces},
url = {http://eudml.org/doc/10451},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Björklund, Michael
AU - Fish, Alexander
TI - Continuous Measures on Homogenous Spaces
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2169
EP - 2174
AB - In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.
LA - eng
KW - Probability measures on groups; heat kernels; Probabilities on homogeneous spaces; heat kernel; continuous measures; N. Wiener's criterion
UR - http://eudml.org/doc/10451
ER -
References
top- Jean-Philippe Anker, Patrick Ostellari, The heat kernel on noncompact symmetric spaces. Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2 210 (2003), 27-46 Zbl1036.22005MR2018351
- M. Anoussis, A. Bisbas, Continuous measures on compact Lie groups, Ann. Inst. Fourier (Grenoble) 50 (2000), 1277-1296 Zbl0969.43001MR1799746
- M Berger, A panoramic view of Riemannian geometry, (2003), Springer-Verlag, Berlin Zbl1038.53002MR2002701
- I. Chavel, Riemannian Geometry: A Modern Introduction, (1994), Cambridge University Press, New York Zbl0819.53001MR2229062
- C. Deninger, W. Singhof, The e-invariant and the spectrum for compact nilmanifolds covered by Heisenberg groups, Invent. Math. 78 (1984), 101-112 Zbl0558.55010MR762355
- H.D. Fegan, The heat equation on a compact Lie group, Trans. Amer. Math. Soc. 246 (1978), 339-357 Zbl0402.22001MR515542
- C. C. Graham, O. C. McGehee, Essays in Commutative Harmonic Analysis, (1979), Springer-Verlag, New York Zbl0439.43001MR550606
- M. Taylor, Noncommutative Harmonic Analysis, Math. Surveys and Monogr (1986), American Math. Society, Providence, R.I. Zbl0604.43001MR852988
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.