Selmer groups for elliptic curves in l d -extensions of function fields of characteristic p

Andrea Bandini[1]; Ignazio Longhi[2]

  • [1] Università della Calabria Dipartimento di Matematica via P. Bucci - Cubo 30B 87036 Arcavacata di Rende (CS) (Italy)
  • [2] National Taiwan University Department of Mathematics N ∘  1 section 4 Roosevelt Road Taipei 106 (Taiwan)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2301-2327
  • ISSN: 0373-0956

Abstract

top
Let F be a function field of characteristic p > 0 , / F a l d -extension (for some prime l p ) and E / F a non-isotrivial elliptic curve. We study the behaviour of the r -parts of the Selmer groups ( r any prime) in the subextensions of via appropriate versions of Mazur’s Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of / F .

How to cite

top

Bandini, Andrea, and Longhi, Ignazio. "Selmer groups for elliptic curves in $\mathbb{Z}_l^d$-extensions of function fields of characteristic $p$." Annales de l’institut Fourier 59.6 (2009): 2301-2327. <http://eudml.org/doc/10455>.

@article{Bandini2009,
abstract = {Let $F$ be a function field of characteristic $p&gt;0$, $\mathcal\{F\}/F$ a $\mathbb\{Z\}_l^d$-extension (for some prime $l\ne p$) and $E/F$ a non-isotrivial elliptic curve. We study the behaviour of the $r$-parts of the Selmer groups ($r$ any prime) in the subextensions of $\mathcal\{F\}$ via appropriate versions of Mazur’s Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of $\mathcal\{F\}/F$.},
affiliation = {Università della Calabria Dipartimento di Matematica via P. Bucci - Cubo 30B 87036 Arcavacata di Rende (CS) (Italy); National Taiwan University Department of Mathematics N ∘  1 section 4 Roosevelt Road Taipei 106 (Taiwan)},
author = {Bandini, Andrea, Longhi, Ignazio},
journal = {Annales de l’institut Fourier},
keywords = {Selmer groups; elliptic curves; function fields; Iwasawa theory},
language = {eng},
number = {6},
pages = {2301-2327},
publisher = {Association des Annales de l’institut Fourier},
title = {Selmer groups for elliptic curves in $\mathbb\{Z\}_l^d$-extensions of function fields of characteristic $p$},
url = {http://eudml.org/doc/10455},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Bandini, Andrea
AU - Longhi, Ignazio
TI - Selmer groups for elliptic curves in $\mathbb{Z}_l^d$-extensions of function fields of characteristic $p$
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2301
EP - 2327
AB - Let $F$ be a function field of characteristic $p&gt;0$, $\mathcal{F}/F$ a $\mathbb{Z}_l^d$-extension (for some prime $l\ne p$) and $E/F$ a non-isotrivial elliptic curve. We study the behaviour of the $r$-parts of the Selmer groups ($r$ any prime) in the subextensions of $\mathcal{F}$ via appropriate versions of Mazur’s Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of $\mathcal{F}/F$.
LA - eng
KW - Selmer groups; elliptic curves; function fields; Iwasawa theory
UR - http://eudml.org/doc/10455
ER -

References

top
  1. P. N. Balister, S. Howson, Note on Nakayama’s lemma for compact Λ -modules, Asian J. Math. 1 (1997), 224-229 Zbl0904.16019MR1491983
  2. A. Bandini, I. Longhi, Control theorems for elliptic curves over function fields, Int. J. Number Theory 5 (2009), 229-256 Zbl1234.11071MR2502807
  3. A. Bandini, I. Longhi, S. Vigni, Torsion points on elliptic curves over function fields and a theorem of Igusa Zbl1247.11083
  4. Jordan S. Ellenberg, Selmer groups and Mordell-Weil groups of elliptic curves over towers of function fields, Compos. Math. 142 (2006), 1215-1230 Zbl1106.11021MR2264662
  5. Lisa A. Fastenberg, Mordell-Weil groups in procyclic extensions of a function field, Duke Math. J. 89 (1997), 217-224 Zbl0903.14006MR1460621
  6. Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) 1716 (1999), 51-144, Springer, Berlin Zbl0946.11027MR1754686
  7. Ralph Greenberg, Introduction to Iwasawa theory for elliptic curves, Arithmetic algebraic geometry (Park City, UT, 1999) 9 (2001), 407-464, Amer. Math. Soc., Providence, RI Zbl1002.11048MR1860044
  8. A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), (2003), Société Mathématique de France, Paris MR2017446
  9. Jun-ichi Igusa, Fibre systems of Jacobian varieties. III. Fibre systems of elliptic curves, Amer. J. Math. 81 (1959), 453-476 Zbl0115.38904MR104669
  10. Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266 Zbl0245.14015MR444670
  11. J. S. Milne, Étale cohomology, 33 (1980), Princeton University Press, Princeton, N.J. Zbl0433.14012MR559531
  12. J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) (1986), 167-212, Springer, New York Zbl0604.14018MR861976
  13. Jürgen Neukirch, Algebraic number theory, 322 (1999), Springer-Verlag, Berlin Zbl0956.11021MR1697859
  14. Jürgen Neukirch, Alexander Schmidt, Kay Wingberg, Cohomology of number fields, 323 (2000), Springer-Verlag, Berlin Zbl0948.11001MR1737196
  15. Tadashi Ochiai, Fabien Trihan, On the Selmer groups of abelian varieties over function fields of characteristic p &gt; 0 , Math. Proc. Cambridge Philos. Soc. 146 (2009), 23-43 Zbl1156.14037MR2461865
  16. Ambrus Pál, Proof of an exceptional zero conjecture for elliptic curves over function fields, Math. Z. 254 (2006), 461-483 Zbl1196.11090MR2244360
  17. Jean-Pierre Serre, Local fields, 67 (1979), Springer-Verlag, New York Zbl0423.12016MR554237
  18. Tetsuji Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), 415-432 Zbl0602.14033MR833362
  19. Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), 211-240 Zbl0725.14017MR1081832
  20. Joseph H. Silverman, The arithmetic of elliptic curves, 106 (1986), Springer-Verlag, New York Zbl0585.14026MR817210
  21. Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, 151 (1994), Springer-Verlag, New York Zbl0911.14015MR1312368
  22. Joseph H. Silverman, The rank of elliptic surfaces in unramified abelian towers, J. Reine Angew. Math. 577 (2004), 153-169 Zbl1105.11016MR2108217
  23. Fabien Trihan, On the Iwasawa Main Conjecture of abelian varieties over function fields of characteristic p &gt; 0  Zbl1301.11056
  24. Douglas Ulmer, Elliptic curves with large rank over function fields, Ann. of Math. (2) 155 (2002), 295-315 Zbl1109.11314MR1888802
  25. Douglas Ulmer, Jacobi sums, Fermat Jacobians, and ranks of abelian varieties over towers of function fields, Math. Res. Lett. 14 (2007), 453-467 Zbl1127.14021MR2318649

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.