Group Schemes over artinian rings and Applications

Ioan Berbec[1]

  • [1] University of California at Berkeley Department of Mathematics Berkeley, CA 94720 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2371-2427
  • ISSN: 0373-0956

Abstract

top
Let n be a positive integer and A a complete characteristic zero discrete valuation ring with maximal ideal 𝔪 , absolute ramification index e < p - 1 and perfect residue field k of characteristic p > 2 . In this paper we classify smooth finite dimensional formal p -faithful groups over A n = A / 𝔪 n A , i.e. groups on which the “multiplication by p ” morphism is faithfully flat, in particular p -divisible groups. As applications, we prove that p -divisible groups over k , and the morphisms between them, lift canonically to A / p A , and we study liftings to characteristic zero of certain connected p -divisible groups of dimension d and height h over k = k ¯ , with d and h coprime. When e = 1 , we classify finite flat group schemes over A / p 2 A of p -power order and prove that a finite flat group scheme over A / p n A of p -power order, having flat p i -torsion for every i 1 , lifts to A .

How to cite

top

Berbec, Ioan. "Group Schemes over artinian rings and Applications." Annales de l’institut Fourier 59.6 (2009): 2371-2427. <http://eudml.org/doc/10458>.

@article{Berbec2009,
abstract = {Let $ n $ be a positive integer and $ A^\{\prime\} $ a complete characteristic zero discrete valuation ring with maximal ideal $ \mathfrak\{m\} $, absolute ramification index $ e&lt;p-1 $ and perfect residue field $ k $ of characteristic $ p&gt;2 $. In this paper we classify smooth finite dimensional formal $ p $-faithful groups over $ A_\{n\}^\{\prime\}=A^\{\prime\}/\mathfrak\{m\}^\{n\}A^\{\prime\} $, i.e. groups on which the “multiplication by $ p $” morphism is faithfully flat, in particular $ p $-divisible groups. As applications, we prove that $ p $-divisible groups over $ k $, and the morphisms between them, lift canonically to $ A^\{\prime\}/pA^\{\prime\} $, and we study liftings to characteristic zero of certain connected $ p $-divisible groups of dimension $ d $ and height $ h $ over $ k=\overline\{k\} $, with $ d $ and $ h $ coprime. When $e=1$, we classify finite flat group schemes over $ A^\{\prime\}/p^\{2\}A^\{\prime\} $ of $ p $-power order and prove that a finite flat group scheme over $ A^\{\prime\}/p^\{n\}A^\{\prime\} $ of $ p $-power order, having flat $p^i$-torsion for every $i\ge 1$, lifts to $A^\{\prime\}$.},
affiliation = {University of California at Berkeley Department of Mathematics Berkeley, CA 94720 (USA)},
author = {Berbec, Ioan},
journal = {Annales de l’institut Fourier},
keywords = {Group scheme; $p$-divisible group; almost canonical lifting; group scheme; -divisible group},
language = {eng},
number = {6},
pages = {2371-2427},
publisher = {Association des Annales de l’institut Fourier},
title = {Group Schemes over artinian rings and Applications},
url = {http://eudml.org/doc/10458},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Berbec, Ioan
TI - Group Schemes over artinian rings and Applications
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2371
EP - 2427
AB - Let $ n $ be a positive integer and $ A^{\prime} $ a complete characteristic zero discrete valuation ring with maximal ideal $ \mathfrak{m} $, absolute ramification index $ e&lt;p-1 $ and perfect residue field $ k $ of characteristic $ p&gt;2 $. In this paper we classify smooth finite dimensional formal $ p $-faithful groups over $ A_{n}^{\prime}=A^{\prime}/\mathfrak{m}^{n}A^{\prime} $, i.e. groups on which the “multiplication by $ p $” morphism is faithfully flat, in particular $ p $-divisible groups. As applications, we prove that $ p $-divisible groups over $ k $, and the morphisms between them, lift canonically to $ A^{\prime}/pA^{\prime} $, and we study liftings to characteristic zero of certain connected $ p $-divisible groups of dimension $ d $ and height $ h $ over $ k=\overline{k} $, with $ d $ and $ h $ coprime. When $e=1$, we classify finite flat group schemes over $ A^{\prime}/p^{2}A^{\prime} $ of $ p $-power order and prove that a finite flat group scheme over $ A^{\prime}/p^{n}A^{\prime} $ of $ p $-power order, having flat $p^i$-torsion for every $i\ge 1$, lifts to $A^{\prime}$.
LA - eng
KW - Group scheme; $p$-divisible group; almost canonical lifting; group scheme; -divisible group
UR - http://eudml.org/doc/10458
ER -

References

top
  1. Pierre Berthelot, Lawrence Breen, William Messing, Théorie de Dieudonné cristalline. II, 930 (1982), Springer-Verlag, Berlin Zbl0516.14015MR667344
  2. Christophe Breuil, Groupes p -divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), 489-549 Zbl1042.14018MR1804530
  3. Brian Conrad, Finite group schemes over bases with low ramification, Compositio Math. 119 (1999), 239-320 Zbl0984.14015MR1727133
  4. M. Demazure, A. Grothendieck, Schémas en groupes. I: Propriétés générales des schémas en groupes, 151 (1970), Springer-Verlag, Berlin Zbl0207.51401MR274458
  5. Jean-Marc Fontaine, Groupes p -divisibles sur les corps locaux, (1977), Société Mathématique de France, Paris Zbl0377.14009MR498610
  6. Benedict H. Gross, On canonical and quasicanonical liftings, Invent. Math. 84 (1986), 321-326 Zbl0597.14044MR833193
  7. Michiel Hazewinkel, Formal groups and applications, 78 (1978), Academic Press Inc., New York Zbl0454.14020MR506881
  8. Luc Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque (1985), 151-198 Zbl1182.14050MR801922
  9. N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976–78) 868 (1981), 138-202, Springer, Berlin Zbl0477.14007MR638600
  10. Jonathan Lubin, One-parameter formal Lie groups over p -adic integer rings, Ann. of Math. (2) 80 (1964), 464-484 Zbl0135.07003MR168567
  11. Ju. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), 3-90 Zbl0128.15603MR157972
  12. Frans Oort, Embeddings of finite group schemes into abelian schemes, (1967) Zbl0281.14019
  13. Michael Rapoport, On the Newton stratification, Astérisque (2003), Exp. No. 903, viii, 207-224 Zbl1159.14304MR2074057
  14. Michel Raynaud, Schémas en groupes de type ( p , , p ) , Bull. Soc. Math. France 102 (1974), 241-280 Zbl0325.14020MR419467
  15. Jiu-Kang Yu, On the moduli of quasi-canonical liftings, Compositio Math. 96 (1995), 293-321 Zbl0866.14029MR1327148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.