Group Schemes over artinian rings and Applications

Ioan Berbec[1]

  • [1] University of California at Berkeley Department of Mathematics Berkeley, CA 94720 (USA)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2371-2427
  • ISSN: 0373-0956

Abstract

top
Let n be a positive integer and A a complete characteristic zero discrete valuation ring with maximal ideal 𝔪 , absolute ramification index e < p - 1 and perfect residue field k of characteristic p > 2 . In this paper we classify smooth finite dimensional formal p -faithful groups over A n = A / 𝔪 n A , i.e. groups on which the “multiplication by p ” morphism is faithfully flat, in particular p -divisible groups. As applications, we prove that p -divisible groups over k , and the morphisms between them, lift canonically to A / p A , and we study liftings to characteristic zero of certain connected p -divisible groups of dimension d and height h over k = k ¯ , with d and h coprime. When e = 1 , we classify finite flat group schemes over A / p 2 A of p -power order and prove that a finite flat group scheme over A / p n A of p -power order, having flat p i -torsion for every i 1 , lifts to A .

How to cite

top

Berbec, Ioan. "Group Schemes over artinian rings and Applications." Annales de l’institut Fourier 59.6 (2009): 2371-2427. <http://eudml.org/doc/10458>.

@article{Berbec2009,
abstract = {Let $ n $ be a positive integer and $ A^\{\prime\} $ a complete characteristic zero discrete valuation ring with maximal ideal $ \mathfrak\{m\} $, absolute ramification index $ e&lt;p-1 $ and perfect residue field $ k $ of characteristic $ p&gt;2 $. In this paper we classify smooth finite dimensional formal $ p $-faithful groups over $ A_\{n\}^\{\prime\}=A^\{\prime\}/\mathfrak\{m\}^\{n\}A^\{\prime\} $, i.e. groups on which the “multiplication by $ p $” morphism is faithfully flat, in particular $ p $-divisible groups. As applications, we prove that $ p $-divisible groups over $ k $, and the morphisms between them, lift canonically to $ A^\{\prime\}/pA^\{\prime\} $, and we study liftings to characteristic zero of certain connected $ p $-divisible groups of dimension $ d $ and height $ h $ over $ k=\overline\{k\} $, with $ d $ and $ h $ coprime. When $e=1$, we classify finite flat group schemes over $ A^\{\prime\}/p^\{2\}A^\{\prime\} $ of $ p $-power order and prove that a finite flat group scheme over $ A^\{\prime\}/p^\{n\}A^\{\prime\} $ of $ p $-power order, having flat $p^i$-torsion for every $i\ge 1$, lifts to $A^\{\prime\}$.},
affiliation = {University of California at Berkeley Department of Mathematics Berkeley, CA 94720 (USA)},
author = {Berbec, Ioan},
journal = {Annales de l’institut Fourier},
keywords = {Group scheme; $p$-divisible group; almost canonical lifting; group scheme; -divisible group},
language = {eng},
number = {6},
pages = {2371-2427},
publisher = {Association des Annales de l’institut Fourier},
title = {Group Schemes over artinian rings and Applications},
url = {http://eudml.org/doc/10458},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Berbec, Ioan
TI - Group Schemes over artinian rings and Applications
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2371
EP - 2427
AB - Let $ n $ be a positive integer and $ A^{\prime} $ a complete characteristic zero discrete valuation ring with maximal ideal $ \mathfrak{m} $, absolute ramification index $ e&lt;p-1 $ and perfect residue field $ k $ of characteristic $ p&gt;2 $. In this paper we classify smooth finite dimensional formal $ p $-faithful groups over $ A_{n}^{\prime}=A^{\prime}/\mathfrak{m}^{n}A^{\prime} $, i.e. groups on which the “multiplication by $ p $” morphism is faithfully flat, in particular $ p $-divisible groups. As applications, we prove that $ p $-divisible groups over $ k $, and the morphisms between them, lift canonically to $ A^{\prime}/pA^{\prime} $, and we study liftings to characteristic zero of certain connected $ p $-divisible groups of dimension $ d $ and height $ h $ over $ k=\overline{k} $, with $ d $ and $ h $ coprime. When $e=1$, we classify finite flat group schemes over $ A^{\prime}/p^{2}A^{\prime} $ of $ p $-power order and prove that a finite flat group scheme over $ A^{\prime}/p^{n}A^{\prime} $ of $ p $-power order, having flat $p^i$-torsion for every $i\ge 1$, lifts to $A^{\prime}$.
LA - eng
KW - Group scheme; $p$-divisible group; almost canonical lifting; group scheme; -divisible group
UR - http://eudml.org/doc/10458
ER -

References

top
  1. Pierre Berthelot, Lawrence Breen, William Messing, Théorie de Dieudonné cristalline. II, 930 (1982), Springer-Verlag, Berlin Zbl0516.14015MR667344
  2. Christophe Breuil, Groupes p -divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), 489-549 Zbl1042.14018MR1804530
  3. Brian Conrad, Finite group schemes over bases with low ramification, Compositio Math. 119 (1999), 239-320 Zbl0984.14015MR1727133
  4. M. Demazure, A. Grothendieck, Schémas en groupes. I: Propriétés générales des schémas en groupes, 151 (1970), Springer-Verlag, Berlin Zbl0207.51401MR274458
  5. Jean-Marc Fontaine, Groupes p -divisibles sur les corps locaux, (1977), Société Mathématique de France, Paris Zbl0377.14009MR498610
  6. Benedict H. Gross, On canonical and quasicanonical liftings, Invent. Math. 84 (1986), 321-326 Zbl0597.14044MR833193
  7. Michiel Hazewinkel, Formal groups and applications, 78 (1978), Academic Press Inc., New York Zbl0454.14020MR506881
  8. Luc Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque (1985), 151-198 Zbl1182.14050MR801922
  9. N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976–78) 868 (1981), 138-202, Springer, Berlin Zbl0477.14007MR638600
  10. Jonathan Lubin, One-parameter formal Lie groups over p -adic integer rings, Ann. of Math. (2) 80 (1964), 464-484 Zbl0135.07003MR168567
  11. Ju. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), 3-90 Zbl0128.15603MR157972
  12. Frans Oort, Embeddings of finite group schemes into abelian schemes, (1967) Zbl0281.14019
  13. Michael Rapoport, On the Newton stratification, Astérisque (2003), Exp. No. 903, viii, 207-224 Zbl1159.14304MR2074057
  14. Michel Raynaud, Schémas en groupes de type ( p , , p ) , Bull. Soc. Math. France 102 (1974), 241-280 Zbl0325.14020MR419467
  15. Jiu-Kang Yu, On the moduli of quasi-canonical liftings, Compositio Math. 96 (1995), 293-321 Zbl0866.14029MR1327148

NotesEmbed ?

top

You must be logged in to post comments.