-divisible groups, finite groups and filtered modules. (Groupes -divisibles, groupes finis et modules filtrés.)
Annals of Mathematics. Second Series (2000)
- Volume: 152, Issue: 2, page 489-549
- ISSN: 0003-486X
Access Full Article
topHow to cite
topBreuil, Christophe. "-divisible groups, finite groups and filtered modules. (Groupes -divisibles, groupes finis et modules filtrés.)." Annals of Mathematics. Second Series 152.2 (2000): 489-549. <http://eudml.org/doc/123677>.
@article{Breuil2000,
author = {Breuil, Christophe},
journal = {Annals of Mathematics. Second Series},
keywords = {Honda system; filtered modules; -group; cristalline -adic Galois representation; -group; cristalline -adic Galois representation},
language = {eng},
number = {2},
pages = {489-549},
publisher = {Princeton University, Mathematics Department, Princeton, NJ; Mathematical Sciences Publishers, Berkeley},
title = {-divisible groups, finite groups and filtered modules. (Groupes -divisibles, groupes finis et modules filtrés.)},
url = {http://eudml.org/doc/123677},
volume = {152},
year = {2000},
}
TY - JOUR
AU - Breuil, Christophe
TI - -divisible groups, finite groups and filtered modules. (Groupes -divisibles, groupes finis et modules filtrés.)
JO - Annals of Mathematics. Second Series
PY - 2000
PB - Princeton University, Mathematics Department, Princeton, NJ; Mathematical Sciences Publishers, Berkeley
VL - 152
IS - 2
SP - 489
EP - 549
LA - eng
KW - Honda system; filtered modules; -group; cristalline -adic Galois representation; -group; cristalline -adic Galois representation
UR - http://eudml.org/doc/123677
ER -
Citations in EuDML Documents
top- Eike Lau, A duality theorem for Dieudonné displays
- Tong Liu, The correspondence between Barsotti-Tate groups and Kisin modules when
- Olivier Brinon, Fabien Trihan, Représentations cristallines et -cristaux : le cas d’un corps résiduel imparfait
- Ioan Berbec, Group Schemes over artinian rings and Applications
- William Messing, Travaux de Zink
- Xavier Caruso, -représentations semi-stables
- Bas Edixhoven, Rational elliptic curves are modular
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.