The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms
Satoshi Koike[1]; Laurentiu Paunescu[2]
- [1] Hyogo University of Teacher Education Department of Mathematics Kato, Hyogo 673-1494 (Japan)
- [2] University of Sydney School of Mathematics and Statistics Sydney, NSW, 2006 (Australia)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2445-2467
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKoike, Satoshi, and Paunescu, Laurentiu. "The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms." Annales de l’institut Fourier 59.6 (2009): 2445-2467. <http://eudml.org/doc/10460>.
@article{Koike2009,
abstract = {Let $A \subset \mathbb\{R\}^n$ be a set-germ at $0 \in \mathbb\{R\}^n$ such that $0 \in \overline\{A\}$. We say that $r \in S^\{n-1\}$ is a direction of $A$ at $0 \in \mathbb\{R\}^n$ if there is a sequence of points $\lbrace x_i \rbrace \subset A \setminus \lbrace 0 \rbrace $ tending to $0 \in \mathbb\{R\}^n$ such that $\{x_i \over \Vert x_i \Vert \} \rightarrow r$ as $i \rightarrow \infty $. Let $D(A)$ denote the set of all directions of $A$ at $0 \in \mathbb\{R\}^n$.Let $A, \ B \subset \mathbb\{R\}^n$ be subanalytic set-germs at $0 \in \mathbb\{R\}^n$ such that $0 \in \overline\{A\} \cap \overline\{B\}$. We study the problem of whether the dimension of the common direction set, $\dim (D(A) \cap D(B))$ is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of $A$ and $B$ are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.},
affiliation = {Hyogo University of Teacher Education Department of Mathematics Kato, Hyogo 673-1494 (Japan); University of Sydney School of Mathematics and Statistics Sydney, NSW, 2006 (Australia)},
author = {Koike, Satoshi, Paunescu, Laurentiu},
journal = {Annales de l’institut Fourier},
keywords = {Subanalytic set; direction set; bi-Lipschitz homeomorphism; subanalytic set; invariant of a subanalytic set},
language = {eng},
number = {6},
pages = {2445-2467},
publisher = {Association des Annales de l’institut Fourier},
title = {The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms},
url = {http://eudml.org/doc/10460},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Koike, Satoshi
AU - Paunescu, Laurentiu
TI - The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2445
EP - 2467
AB - Let $A \subset \mathbb{R}^n$ be a set-germ at $0 \in \mathbb{R}^n$ such that $0 \in \overline{A}$. We say that $r \in S^{n-1}$ is a direction of $A$ at $0 \in \mathbb{R}^n$ if there is a sequence of points $\lbrace x_i \rbrace \subset A \setminus \lbrace 0 \rbrace $ tending to $0 \in \mathbb{R}^n$ such that ${x_i \over \Vert x_i \Vert } \rightarrow r$ as $i \rightarrow \infty $. Let $D(A)$ denote the set of all directions of $A$ at $0 \in \mathbb{R}^n$.Let $A, \ B \subset \mathbb{R}^n$ be subanalytic set-germs at $0 \in \mathbb{R}^n$ such that $0 \in \overline{A} \cap \overline{B}$. We study the problem of whether the dimension of the common direction set, $\dim (D(A) \cap D(B))$ is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of $A$ and $B$ are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.
LA - eng
KW - Subanalytic set; direction set; bi-Lipschitz homeomorphism; subanalytic set; invariant of a subanalytic set
UR - http://eudml.org/doc/10460
ER -
References
top- E. Bierstone, P. D. Milman, Arc-analytic functions, Invent. math. 101 (1990), 411-424 Zbl0723.32005MR1062969
- J. Bochnak, J.-J. Risler, Sur les exposants de Lojasiewicz, Comment. Math. Helv. 50 (1975), 493-507 Zbl0321.32006MR404674
- J. Briançon, J. P. Speder, La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci. Paris 280 (1975), 365-367 Zbl0331.32010MR425165
- T. Fukui, The modified analytic trivialization via the weighted blowing up, J. Math. Soc. Japan 44 (1992), 455-459 Zbl0766.58008MR1167377
- T. Fukui, S. Koike, T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities 381 (1998), 8-29, T. Fukuda, T. Fukui, S. Izumiya and S. Koike Zbl0954.26012MR1607662
- T. Fukui, L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan 52 (2000), 433-446 Zbl0964.32023MR1742795
- T. Fukui, L. Paunescu, M. Coste, K. Kurdyka, C. McCrory, A. Parusinski, Arc Spaces and additive invariants in real algebraic and analytic geometry, (2008), Société Mathématique de France Zbl1155.14313MR2404096
- J.-P. Henry, A. Parusiński, Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math. 136 (2003), 217-235 Zbl1026.32055MR1967391
- J.-P. Henry, A. Parusiński, Invariants of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications 65 (2004), 67-75 Zbl1059.32006MR2104338
- H. Hironaka, Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki (1973), 453-493, Kinokuniya, Tokyo Zbl0297.32008MR377101
- H. Hironaka, Stratification and flatness, Real and Complex Singularities (1977), 196-265, Oslo 1976, P. Holm Zbl0424.32004MR499286
- S. Koike, On strong -equivalence of real analytic functions, J. Math. Soc. Japan 45 (1993), 313-320 Zbl0788.32024MR1206656
- S. Koike, The Briançon-Speder and Oka families are not biLipschitz trivial, Several Topics in Singularity Theory, RIMS Kokyuroku 1328 (2003), 165-173 Zbl1064.58031
- T.-C. Kuo, A complete determination of -sufficiency in , Invent. math. 8 (1969), 226-235 Zbl0183.04602MR254860
- T.-C. Kuo, Characterizations of -sufficiency of jets, Topology 11 (1972), 115-131 Zbl0234.58005MR288775
- T.-C. Kuo, Une classification des singularités réels, C.R. Acad. Sci. Paris 288 (1979), 809-812 Zbl0404.58013MR535641
- T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614 Zbl0509.58007MR589100
- T.-C. Kuo, On classification of real singularities, Invent. math. 82 (1985), 257-262 Zbl0587.32018MR809714
- K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462 Zbl0686.14027MR967023
- S. Lojasiewicz, Ensembles semi-analytiques, Inst. Hautes Etudes Sci. Lectute Note (1967) Zbl0241.32005
- T. Mostowski, Lipschitz equisingularity, 243 (1985), Dissertationes Math. Zbl0578.32020MR808226
- T. Mostowski, A criterion for Lipschitz equisingularity, Bull. Acad. Polon. Sci. 37 (1988), 109-116 Zbl0761.32018MR1101458
- T. Mostowski, Lipschitz equisingularity problems, Several Topics in Singularity Theory, RIMS Kokyuroku 1328 (2003), 73-113 Zbl1064.58032
- M. Oka, On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary Math. 90 (1989), 199-210 Zbl0682.32011MR1000603
- A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier 38 (1988), 189-213 Zbl0631.32006MR978246
- A. Parusiński, Lipschitz stratification of real analytic sets, Singularities, Banach Center Publications 20 (1988), 323-333 Zbl0666.32011MR1101849
- A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. Ec. Norm. Sup. 27 (1994), 661-696 Zbl0819.32007MR1307677
- L. Paunescu, An example of blow-analytic homeomorphism, Real Analytic and Algebraic Singularities 381 (1998), 62-63, T. Fukuda, T. Fukui, S. Izumiya and S. Koike Zbl0896.58012MR1607678
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.