The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms

Satoshi Koike[1]; Laurentiu Paunescu[2]

  • [1] Hyogo University of Teacher Education Department of Mathematics Kato, Hyogo 673-1494 (Japan)
  • [2] University of Sydney School of Mathematics and Statistics Sydney, NSW, 2006 (Australia)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2445-2467
  • ISSN: 0373-0956

Abstract

top
Let A n be a set-germ at 0 n such that 0 A ¯ . We say that r S n - 1 is a direction of A at 0 n if there is a sequence of points { x i } A { 0 } tending to 0 n such that x i x i r as i . Let D ( A ) denote the set of all directions of A at 0 n .Let A , B n be subanalytic set-germs at 0 n such that 0 A ¯ B ¯ . We study the problem of whether the dimension of the common direction set, dim ( D ( A ) D ( B ) ) is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of A and B are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.

How to cite

top

Koike, Satoshi, and Paunescu, Laurentiu. "The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms." Annales de l’institut Fourier 59.6 (2009): 2445-2467. <http://eudml.org/doc/10460>.

@article{Koike2009,
abstract = {Let $A \subset \mathbb\{R\}^n$ be a set-germ at $0 \in \mathbb\{R\}^n$ such that $0 \in \overline\{A\}$. We say that $r \in S^\{n-1\}$ is a direction of $A$ at $0 \in \mathbb\{R\}^n$ if there is a sequence of points $\lbrace x_i \rbrace \subset A \setminus \lbrace 0 \rbrace $ tending to $0 \in \mathbb\{R\}^n$ such that $\{x_i \over \Vert x_i \Vert \} \rightarrow r$ as $i \rightarrow \infty $. Let $D(A)$ denote the set of all directions of $A$ at $0 \in \mathbb\{R\}^n$.Let $A, \ B \subset \mathbb\{R\}^n$ be subanalytic set-germs at $0 \in \mathbb\{R\}^n$ such that $0 \in \overline\{A\} \cap \overline\{B\}$. We study the problem of whether the dimension of the common direction set, $\dim (D(A) \cap D(B))$ is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of $A$ and $B$ are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.},
affiliation = {Hyogo University of Teacher Education Department of Mathematics Kato, Hyogo 673-1494 (Japan); University of Sydney School of Mathematics and Statistics Sydney, NSW, 2006 (Australia)},
author = {Koike, Satoshi, Paunescu, Laurentiu},
journal = {Annales de l’institut Fourier},
keywords = {Subanalytic set; direction set; bi-Lipschitz homeomorphism; subanalytic set; invariant of a subanalytic set},
language = {eng},
number = {6},
pages = {2445-2467},
publisher = {Association des Annales de l’institut Fourier},
title = {The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms},
url = {http://eudml.org/doc/10460},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Koike, Satoshi
AU - Paunescu, Laurentiu
TI - The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2445
EP - 2467
AB - Let $A \subset \mathbb{R}^n$ be a set-germ at $0 \in \mathbb{R}^n$ such that $0 \in \overline{A}$. We say that $r \in S^{n-1}$ is a direction of $A$ at $0 \in \mathbb{R}^n$ if there is a sequence of points $\lbrace x_i \rbrace \subset A \setminus \lbrace 0 \rbrace $ tending to $0 \in \mathbb{R}^n$ such that ${x_i \over \Vert x_i \Vert } \rightarrow r$ as $i \rightarrow \infty $. Let $D(A)$ denote the set of all directions of $A$ at $0 \in \mathbb{R}^n$.Let $A, \ B \subset \mathbb{R}^n$ be subanalytic set-germs at $0 \in \mathbb{R}^n$ such that $0 \in \overline{A} \cap \overline{B}$. We study the problem of whether the dimension of the common direction set, $\dim (D(A) \cap D(B))$ is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of $A$ and $B$ are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.
LA - eng
KW - Subanalytic set; direction set; bi-Lipschitz homeomorphism; subanalytic set; invariant of a subanalytic set
UR - http://eudml.org/doc/10460
ER -

References

top
  1. E. Bierstone, P. D. Milman, Arc-analytic functions, Invent. math. 101 (1990), 411-424 Zbl0723.32005MR1062969
  2. J. Bochnak, J.-J. Risler, Sur les exposants de Lojasiewicz, Comment. Math. Helv. 50 (1975), 493-507 Zbl0321.32006MR404674
  3. J. Briançon, J. P. Speder, La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci. Paris 280 (1975), 365-367 Zbl0331.32010MR425165
  4. T. Fukui, The modified analytic trivialization via the weighted blowing up, J. Math. Soc. Japan 44 (1992), 455-459 Zbl0766.58008MR1167377
  5. T. Fukui, S. Koike, T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities 381 (1998), 8-29, T. Fukuda, T. Fukui, S. Izumiya and S. Koike Zbl0954.26012MR1607662
  6. T. Fukui, L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan 52 (2000), 433-446 Zbl0964.32023MR1742795
  7. T. Fukui, L. Paunescu, M. Coste, K. Kurdyka, C. McCrory, A. Parusinski, Arc Spaces and additive invariants in real algebraic and analytic geometry, (2008), Société Mathématique de France Zbl1155.14313MR2404096
  8. J.-P. Henry, A. Parusiński, Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math. 136 (2003), 217-235 Zbl1026.32055MR1967391
  9. J.-P. Henry, A. Parusiński, Invariants of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications 65 (2004), 67-75 Zbl1059.32006MR2104338
  10. H. Hironaka, Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki (1973), 453-493, Kinokuniya, Tokyo Zbl0297.32008MR377101
  11. H. Hironaka, Stratification and flatness, Real and Complex Singularities (1977), 196-265, Oslo 1976, P. Holm Zbl0424.32004MR499286
  12. S. Koike, On strong C 0 -equivalence of real analytic functions, J. Math. Soc. Japan 45 (1993), 313-320 Zbl0788.32024MR1206656
  13. S. Koike, The Briançon-Speder and Oka families are not biLipschitz trivial, Several Topics in Singularity Theory, RIMS Kokyuroku 1328 (2003), 165-173 Zbl1064.58031
  14. T.-C. Kuo, A complete determination of C 0 -sufficiency in J r ( 2 , 1 ) , Invent. math. 8 (1969), 226-235 Zbl0183.04602MR254860
  15. T.-C. Kuo, Characterizations of v -sufficiency of jets, Topology 11 (1972), 115-131 Zbl0234.58005MR288775
  16. T.-C. Kuo, Une classification des singularités réels, C.R. Acad. Sci. Paris 288 (1979), 809-812 Zbl0404.58013MR535641
  17. T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614 Zbl0509.58007MR589100
  18. T.-C. Kuo, On classification of real singularities, Invent. math. 82 (1985), 257-262 Zbl0587.32018MR809714
  19. K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445-462 Zbl0686.14027MR967023
  20. S. Lojasiewicz, Ensembles semi-analytiques, Inst. Hautes Etudes Sci. Lectute Note (1967) Zbl0241.32005
  21. T. Mostowski, Lipschitz equisingularity, 243 (1985), Dissertationes Math. Zbl0578.32020MR808226
  22. T. Mostowski, A criterion for Lipschitz equisingularity, Bull. Acad. Polon. Sci. 37 (1988), 109-116 Zbl0761.32018MR1101458
  23. T. Mostowski, Lipschitz equisingularity problems, Several Topics in Singularity Theory, RIMS Kokyuroku 1328 (2003), 73-113 Zbl1064.58032
  24. M. Oka, On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary Math. 90 (1989), 199-210 Zbl0682.32011MR1000603
  25. A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier 38 (1988), 189-213 Zbl0631.32006MR978246
  26. A. Parusiński, Lipschitz stratification of real analytic sets, Singularities, Banach Center Publications 20 (1988), 323-333 Zbl0666.32011MR1101849
  27. A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. Ec. Norm. Sup. 27 (1994), 661-696 Zbl0819.32007MR1307677
  28. L. Paunescu, An example of blow-analytic homeomorphism, Real Analytic and Algebraic Singularities 381 (1998), 62-63, T. Fukuda, T. Fukui, S. Izumiya and S. Koike Zbl0896.58012MR1607678

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.