Page 1 Next

Displaying 1 – 20 of 69

Showing per page

A note on Bierstone-Milman-Pawłucki's paper "Composite differentiable functions"

Krzysztof Jan Nowak (2011)

Annales Polonici Mathematici

We demonstrate that the composite function theorems of Bierstone-Milman-Pawłucki and of Glaeser carry over to any polynomially bounded, o-minimal structure which admits smooth cell decomposition. Moreover, the assumptions of the o-minimal versions can be considerably relaxed compared with the classical analytic ones.

A proof of the valuation property and preparation theorem

Krzysztof Jan Nowak (2007)

Annales Polonici Mathematici

The purpose of this article is to present a short model-theoretic proof of the valuation property for a polynomially bounded o-minimal theory T. The valuation property was conjectured by van den Dries, and proved for the polynomially bounded case by van den Dries-Speissegger and for the power bounded case by Tyne. Our proof uses the transfer principle for the theory T c o n v (i.e. T with an extra unary symbol denoting a proper convex subring), which-together with quantifier elimination-is due to van den...

A theorem on generic intersections in an o-minimal structure

Krzysztof Jan Nowak (2014)

Fundamenta Mathematicae

Consider a transitive definable action of a Lie group G on a definable manifold M. Given two (locally) definable subsets A and B of M, we prove that the dimension of the intersection σ(A) ∩ B is not greater than the expected one for a generic σ ∈ G.

Arc-analyticity and polynomial arcs

Rémi Soufflet (2004)

Annales Polonici Mathematici

We relate the notion of arc-analyticity and the one of analyticity on restriction to polynomial arcs and we prove that in the subanalytic setting, these two notions coincide.

Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains

Xiaojun Huang, Shanyu Ji (2002)

Annales de l’institut Fourier

For a strongly pseudoconvex domain D n + 1 defined by a real polynomial of degree k 0 , we prove that the Lie group Aut ( D ) can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle Y of D , and that the sum of its Betti numbers is bounded by a certain constant C n , k 0 depending only on n and k 0 . In case D is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser...

Closure Theorem for Partially Semialgebraic Sets

María-Angeles Zurro (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

In 1988 it was proved by the first author that the closure of a partially semialgebraic set is partially semialgebraic. The essential tool used in that proof was the regular separation property. Here we give another proof without using this tool, based on the semianalytic L-cone theorem (Theorem 2), a semianalytic analog of the Cartan-Remmert-Stein lemma with parameters.

Constructible functions on 2-dimensional analytic manifolds.

Isabelle Bonnard, Federica Pieroni (2004)

Revista Matemática Complutense

We present a characterization of sums of signs of global analytic functions on a real analytic manifold M of dimension two. Unlike the algebraic case, obstructions at infinity are not relevant: a function is a sum of signs on M if and only if this is true on each compact subset of M. This characterization gives a necessary and sufficient condition for an analytically constructible function, i.e. a linear combination with integer coefficients of Euler characteristic of fibers of proper analytic morphisms,...

Decomposition into special cubes and its applications to quasi-subanalytic geometry

Krzysztof Jan Nowak (2009)

Annales Polonici Mathematici

The main purpose of this paper is to present a natural method of decomposition into special cubes and to demonstrate how it makes it possible to efficiently achieve many well-known fundamental results from quasianalytic geometry as, for instance, Gabrielov's complement theorem, o-minimality or quasianalytic cell decomposition.

Definable stratification satisfying the Whitney property with exponent 1

Beata Kocel-Cynk (2007)

Annales Polonici Mathematici

We prove that for a finite collection of sets A , . . . , A s k + n definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto k satisfy the Whitney property with exponent 1.

Density of Morse functions on sets definable in o-minimal structures

Ta Lê Loi (2006)

Annales Polonici Mathematici

We present a tameness property of sets definable in o-minimal structures by showing that Morse functions on a definable closed set form a dense and open subset in the space of definable C p functions endowed with the Whitney topology.

Directional properties of sets definable in o-minimal structures

Satoshi Koike, Ta Lê Loi, Laurentiu Paunescu, Masahiro Shiota (2013)

Annales de l’institut Fourier

In a previous paper by Koike and Paunescu, it was introduced the notion of direction set for a subset of a Euclidean space, and it was shown that the dimension of the common direction set of two subanalytic subsets, called the directional dimension, is preserved by a bi-Lipschitz homeomorphism, provided that their images are also subanalytic. In this paper we give a generalisation of the above result to sets definable in an o-minimal structure on an arbitrary real closed field. More precisely, we...

Distance géodésique sur un sous-analytique.

Krzystof Kurdyka, Patrice Orro (1997)

Revista Matemática de la Universidad Complutense de Madrid

Pour un ensemble sous-analytique, connexe fermé, la distance géodésique est atteinte et est uniformément équivalente, avec des constantes arbitrairement proches de 1, à une distance sous-analytique.

Division of Distributions by Locally Definable Quasianalytic Functions

Krzysztof Jan Nowak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We demonstrate that the Łojasiewicz theorem on the division of distributions by analytic functions carries over to the case of division by quasianalytic functions locally definable in an arbitrary polynomially bounded, o-minimal structure which admits smooth cell decomposition. Hence, in particular, the principal ideal generated by a locally definable quasianalytic function is closed in the Fréchet space of smooth functions.

Divisors in global analytic sets

Francesca Acquistapace, A. Díaz-Cano (2011)

Journal of the European Mathematical Society

We prove that any divisor Y of a global analytic set X n has a generic equation, that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The main result states that if X is pure dimensional, Y is locally principal, X / Y is not connected and Y represents the zero class in H q - 1 ( X , 2 ) then the divisor Y is globally principal.

Currently displaying 1 – 20 of 69

Page 1 Next