Résolution des problèmes de multiflots en nombres entiers dans les grands réseaux

M. Minoux

RAIRO - Operations Research - Recherche Opérationnelle (1975)

  • Volume: 9, Issue: V3, page 21-40
  • ISSN: 0399-0559

How to cite

top

Minoux, M.. "Résolution des problèmes de multiflots en nombres entiers dans les grands réseaux." RAIRO - Operations Research - Recherche Opérationnelle 9.V3 (1975): 21-40. <http://eudml.org/doc/104622>.

@article{Minoux1975,
author = {Minoux, M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {fre},
number = {V3},
pages = {21-40},
publisher = {EDP-Sciences},
title = {Résolution des problèmes de multiflots en nombres entiers dans les grands réseaux},
url = {http://eudml.org/doc/104622},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Minoux, M.
TI - Résolution des problèmes de multiflots en nombres entiers dans les grands réseaux
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1975
PB - EDP-Sciences
VL - 9
IS - V3
SP - 21
EP - 40
LA - fre
UR - http://eudml.org/doc/104622
ER -

References

top
  1. [1] M. MINOUX, Planification à court et à moyen terme d'un réseau de télécommunications, Annal. Télécomm., 29, n°s 5-6, novembre-décembre 1974. MR376132
  2. [2] J. A. TOMLIN, Minimum cost multicommodity networks flows, Operations Research, 14 (1), février 1966, p. 45-51. 
  3. [3] G. B. DANTZIG, Linear programming and extensions, Princeton University Press, 1963. Zbl0997.90504MR201189
  4. [4] T. C. HU, Integer Programming and network flows, Addison-Wesley, 1969. Zbl0197.45701MR263420
  5. [5] L. S. LASDON, Optimization theory for large Systems, Macmillan Series for Operations Research, 1970. Zbl0224.90038MR337317
  6. [6] G. B. DANTZIG et R. M. VAN-SLYKE, Generalized upper boonding techniques, J. Computer System Science, 1, 1967, p. 213-226. Zbl0162.23003MR230541
  7. [7] M. MINOUX, Le problème de l'admissibilité d'un réseau parcouru par des flots multiples, Note technique ITD/CES/59, CNET, mars 1972. 
  8. [8] K. ONAGA et O. KAKUSHO, On feasibility conditions of multicommodity flows in networks, I.E.E.E. Transactions on circuit theory, 18, n° 4, juillet 1971, p. 425-429. MR395780
  9. [9] L. FRATTA, M. GERLA et L. KLEINROCK, The flow deviation method: an approach to store and forward communication network design, Networks, 3, n° 3, 1973, p. 97-133. Zbl1131.90321MR312994
  10. [10] H. FRANK et W. CHOU, Routing in computer networks, Networks, 1, n° 2, 1971, p. 99-112. Zbl0234.94027
  11. [11] L. R. FORD et D. R. FULKERSON, A suggested computation for maximal multicommodity network flows, Management Science, 5, 1958, p. 97-101. Zbl0995.90516MR97878
  12. [12] R. SAIGAL, Multicommodity flows in directed networks, University of California, Berkeley, Ph. D., 1968. 
  13. [13] W. S. JEWELL, Multicommodity network solutions in Théorie des Graphes, Rome 1966, Dunod, Paris, 1967. Zbl0207.50901
  14. [14] J. K. HARTMAN et L. S. LASDON, A generalized upper bounding algorithm for multicommodity network flow problems, Networks, 1, n° 4, 1971, p. 333-354. Zbl0253.90030MR311299
  15. [15] T. C. HU, Multicommodity network flows, J. Orsa, 11 (3) , 1963, p. 344-360. Zbl0123.23704
  16. [16] L. R. FORD et D. R. FULKERSON, Flows in networks, Princeton University Press, Princeton, 1962. Zbl0106.34802MR159700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.