Non-linear programming and the maximum principle for discrete time optimal control problems

T. L. Magnanti

RAIRO - Operations Research - Recherche Opérationnelle (1975)

  • Volume: 9, Issue: V3, page 75-91
  • ISSN: 0399-0559

How to cite

top

Magnanti, T. L.. "Non-linear programming and the maximum principle for discrete time optimal control problems." RAIRO - Operations Research - Recherche Opérationnelle 9.V3 (1975): 75-91. <http://eudml.org/doc/104627>.

@article{Magnanti1975,
author = {Magnanti, T. L.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {V3},
pages = {75-91},
publisher = {EDP-Sciences},
title = {Non-linear programming and the maximum principle for discrete time optimal control problems},
url = {http://eudml.org/doc/104627},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Magnanti, T. L.
TI - Non-linear programming and the maximum principle for discrete time optimal control problems
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1975
PB - EDP-Sciences
VL - 9
IS - V3
SP - 75
EP - 91
LA - eng
UR - http://eudml.org/doc/104627
ER -

References

top
  1. [1] M. D. CANON, D. C CULLUM and E. POLAK, Theory of optimal control and mathematical programming, McGraw-Hill, New York, 1970. Zbl0264.49001MR397497
  2. [2] K. FAN, I. GLICKSBURG and A. J. HOFFMAN, Systems of inequalities involving convex functions, A.M.S. Proc, 8, 1957, pp. 617-622. Zbl0079.02002MR87574
  3. [3] H. HALKIN, A maximum principle of the Pontryagin type for systems described by non-linear difference equations, S.I.A.M. J. Control, 4, 1966, pp. 90-111. Zbl0152.09301MR199005
  4. [4] J. M. HOLTZMAN, On the maximum principle for non-linear discrete-time systems, I.E.E.E. Trans. Automatic Control, 4 1966, pp. 528-547. 
  5. [5] B. W. JORDAN and E. POLAK, Theory of a class of discrete optimal control systems, J. Electronics Control, 17, 1964, pp. 697-713. MR179019
  6. [6] T. L. MAGNANTI, A linear approximation approach to duality in non-linear programming, Tech. Rep. OR 016-73, Oper. Res. Center, M.I.T., April 1973. 
  7. [7] O. L. MANGASARIAN, Non-linear programming, McGraw-Hill, New York, 1969. Zbl0194.20201MR252038
  8. [8] O. L. MANGASARIAN and S. FROMOVITZ, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Analysis and Applic., 17, 1967, pp. 37-47. Zbl0149.16701MR207448
  9. [9] J. M. ORTEGA and W. C. RHEINBOLDT, Iterative solution of non-linear equations in several variables, Academic Press, New York, 1970. Zbl0241.65046MR273810
  10. [10] A. I. PROPOI, The maximum principle for discrete control systems, Avtomatica i Telemachanica, 7, 1965, pp. 1177-1187. Zbl0151.13103MR192942
  11. [11] J. B. ROSEN, Optimal control and convex programming, I.B.M. Symp. Control Theory Applic., Yorktown Heights, New York, October 1964, pp. 223-237. MR218135
  12. [12] R. M VAN SLYKE and R. J. B WETS, A duality theory for abstract mathematical programs with applications to optimal control theory, Math. Res. Lab., Boeing Scientific Research Laboratories, October 1967. Zbl0157.16004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.