### A Bayes estimator of parameters of nonlinear dynamic systems.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Regular stationary stochastic vector processes whose spectral densities are the boundary values of matrix functions with bounded Nevanlinna characteristic are considered. A criterion for the representability of such processes as output data of linear time invariant dynamical systems is established.

The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared...

The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.

Necessary and sufficient conditions for a discrete-time system to be stabilizable via static output feedback are established. The conditions include a Riccati equation. An iterative as well as non-iterative LMI based algorithm with guaranteed cost for the computation of output stabilizing feedback gains is proposed and introduces the novel LMI approach to compute the stabilizing output feedback gain matrix. The results provide the discrete- time counterpart to the results by Kučera and De Souza.

In this paper we investigate the behavior of the discrete time AR (Auto Regressive) representations over a finite time interval, in terms of the finite and infinite spectral structure of the polynomial matrix involved in the AR-equation. A boundary mapping equation and a closed formula for the determination of the solution, in terms of the boundary conditions, are also gived.

In this paper, we study decentralized ${H}_{\infty}$ feedback control systems with quantized signals in local input-output (control) channels. We first assume that a decentralized output feedback controller has been designed for a multi-channel continuous-time system so that the closed-loop system is Hurwitz stable and a desired ${H}_{\infty}$ disturbance attenuation level is achieved. However, since the local measurement outputs are quantized by a general quantizer before they are passed to the controller, the system’s...

We establish a unified approach to stability analysis for switched linear descriptor systems under arbitrary switching in both continuous-time and discrete-time domains. The approach is based on common quadratic Lyapunov functions incorporated with linear matrix inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for the stability of all subsystems, then the switched system is stable under arbitrary switching. The analysis results are natural extensions of the existing...

The prospective work reported in this paper explores a new approach to enhance the performance of an active fault tolerant control system. The proposed technique is based on a modified recovery/trajectory control system in which a reconfigurable reference input is considered when performance degradation occurs in the system due to faults in actuator dynamics. An added value of this work is to reduce the energy spent to achieve the desired closed-loop performance. This work is justified by the need...