Moduli spaces for linear differential equations and the Painlevé equations
Marius van der Put[1]; Masa-Hiko Saito[2]
- [1] University of Groningen Institute of Mathematics and Computing Science P.O. Box 407 9700 AK Groningen (The Netherlands)
- [2] Kobe University Department of Mathematics Graduate School of Science Kobe, Rokko, 657-8501 (Japan)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2611-2667
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topvan der Put, Marius, and Saito, Masa-Hiko. "Moduli spaces for linear differential equations and the Painlevé equations." Annales de l’institut Fourier 59.7 (2009): 2611-2667. <http://eudml.org/doc/10466>.
@article{vanderPut2009,
abstract = {A systematic construction of isomonodromic families of connections of rank two on the Riemann sphere is obtained by considering the analytic Riemann–Hilbert map $RH:\mathcal\{M\} \rightarrow \mathcal\{R\}$, where $\mathcal\{M\}$ is a moduli space of connections and $\mathcal\{R\}$, the monodromy space, is a moduli space for analytic data (i.e., ordinary monodromy, Stokes matrices and links). The assumption that the fibres of $RH$ (i.e., the isomonodromic families) have dimension one, leads to ten moduli spaces $\mathcal\{M\}$. The induced Painlevé equations are computed explicitly. Except for the Painlevé VI case, these families have irregular singularities. The analytic classification of irregular singularities yields explicit spaces $\mathcal\{R\}$, which are families of affine cubic surfaces, related to Okamoto–Painlevé pairs. A weak and a strong form of the Riemann–Hilbert problem is treated. Our paper extends the fundamental work of Jimbo–Miwa–Ueno and is related to recent work on Painlevé equations.},
affiliation = {University of Groningen Institute of Mathematics and Computing Science P.O. Box 407 9700 AK Groningen (The Netherlands); Kobe University Department of Mathematics Graduate School of Science Kobe, Rokko, 657-8501 (Japan)},
author = {van der Put, Marius, Saito, Masa-Hiko},
journal = {Annales de l’institut Fourier},
keywords = {Moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations; moduli space for linear connections},
language = {eng},
number = {7},
pages = {2611-2667},
publisher = {Association des Annales de l’institut Fourier},
title = {Moduli spaces for linear differential equations and the Painlevé equations},
url = {http://eudml.org/doc/10466},
volume = {59},
year = {2009},
}
TY - JOUR
AU - van der Put, Marius
AU - Saito, Masa-Hiko
TI - Moduli spaces for linear differential equations and the Painlevé equations
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2611
EP - 2667
AB - A systematic construction of isomonodromic families of connections of rank two on the Riemann sphere is obtained by considering the analytic Riemann–Hilbert map $RH:\mathcal{M} \rightarrow \mathcal{R}$, where $\mathcal{M}$ is a moduli space of connections and $\mathcal{R}$, the monodromy space, is a moduli space for analytic data (i.e., ordinary monodromy, Stokes matrices and links). The assumption that the fibres of $RH$ (i.e., the isomonodromic families) have dimension one, leads to ten moduli spaces $\mathcal{M}$. The induced Painlevé equations are computed explicitly. Except for the Painlevé VI case, these families have irregular singularities. The analytic classification of irregular singularities yields explicit spaces $\mathcal{R}$, which are families of affine cubic surfaces, related to Okamoto–Painlevé pairs. A weak and a strong form of the Riemann–Hilbert problem is treated. Our paper extends the fundamental work of Jimbo–Miwa–Ueno and is related to recent work on Painlevé equations.
LA - eng
KW - Moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations; moduli space for linear connections
UR - http://eudml.org/doc/10466
ER -
References
top- D. V. Anosov, A. A. Bolibruch, The Riemann-Hilbert problem, (1994), Friedr. Vieweg & Sohn, Braunschweig Zbl0801.34002MR1276272
- Philip Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), 167-208 Zbl1070.34123MR2107041
- A. A. Bolibruch, S. Malek, C. Mitschi, On the generalized Riemann-Hilbert problem with irregular singularities, Expo. Math. 24 (2006), 235-272 Zbl1106.34061MR2250948
- H. Flaschka, A. C. Newell, Monodromy and spectrum preserving deformations. I, Commun. Math. Phys. 76 (1980), 65-116 Zbl0439.34005MR588248
- Robert Fricke, Felix Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, 4 (1965), Johnson Reprint Corp., New York MR183872
- Richard Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321 Zbl38.0362.01MR1511408
- B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, Acta Math. 33 (1910), 1-55 Zbl40.0377.02MR1555055
- R. Garnier, Sur les équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale à ses points critiques fixes, Ann. Ecole Norm. Sup. 29 (1912), 1-126 Zbl43.0382.01MR1509146
- Masuo Hukuhara, Sur les points singuliers des équations différentielles linéaires. II, Jour. Fac. Soc. Hokkaido Univ. 5 (1937), 123-166 Zbl0016.30502
- M. Inaba, Moduli of parabolic connections on a curve and Riemann-Hilbert correspondence, (2006)
- M. Inaba, K. Iwasaki, M.-H. Saito, Dynamics of the sixth Painlevé equation, Théories asymptotiques et équations de Painlevé 14 (2006), 103-167, Soc. Math. France, Paris Zbl1161.34063MR2353464
- M. Inaba, K. Iwasaki, M.-H. Saito, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res. Inst. Math. Sci. 42 (2006), 987-1089 Zbl1127.34055MR2289083
- M. Inaba, K. Iwasaki, M.-H. Saito, Moduli of stableparabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. II, Adv. Stud. Pure Math. 45 (2006), 387-432, Math. Soc. Japan, Tokyo Zbl1115.14005
- K. Iwasaki, An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation, Comm. Math. Phys. 242 (2003), 185-219 Zbl1044.34051MR2018272
- Katsunori Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 131-135 Zbl1058.34125MR1930217
- Michio Jimbo, Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448 Zbl1194.34166MR625446
- Michio Jimbo, Tetsuji Miwa, Kimio Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and -function, Phys. D 2 (1981), 306-352 Zbl1194.34167MR630674
- B. Malgrange, Sur les déformations isomonodromiques. I. Singularités régulières, Mathematics and physics (Paris, 1979/1982) 37 (1983), 401-426, Birkhäuser Boston, Boston, MA Zbl0528.32017MR728431
- Bernard Malgrange, Déformations isomonodromiques, forme de Liouville, fonction , Ann. Inst. Fourier (Grenoble) 54 (2004), 1371-1392, xiv, xx Zbl1086.34071MR2127851
- Yousuke Ohyama, Hiroyuki Kawamuko, Hidetaka Sakai, Kazuo Okamoto, Studies on the Painlevé equations. V. Third Painlevé equations of special type and , J. Math. Sci. Univ. Tokyo 13 (2006), 145-204 Zbl1170.34061MR2277519
- Yousuke Ohyama, Shoji Okumura, A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations, J. Phys. A 39 (2006), 12129-12151 Zbl1116.34072MR2266216
- Kazuo Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. (N.S.) 5 (1979), 1-79 Zbl0426.58017MR614694
- Paul Painlevé, Oeuvres de Paul Painlevé. Tome I, (1973), Éditions du Centre National de la Recherche Scientifique, Paris Zbl1092.01510MR532682
- Marius van der Put, Michael F. Singer, Galois theory of linear differential equations, 328 (2003), Springer-Verlag, Berlin Zbl1036.12008MR1960772
- Masa-Hiko Saito, Taro Takebe, Hitomi Terajima, Deformation of Okamoto-Painlevé pairs and Painlevé equations, J. Algebraic Geom. 11 (2002), 311-362 Zbl1022.34079MR1874117
- Masa-Hiko Saito, Hitomi Terajima, Nodal curves and Riccati solutions of Painlevé equations, J. Math. Kyoto Univ. 44 (2004), 529-568 Zbl1117.14015MR2103782
- H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229 Zbl1010.34083MR1882403
- Y. Shibuya, Perturbation of linear ordinary differential equations at irregular singular points, Funkcial. Ekvac. 11 (1968), 235-246 Zbl0228.34036MR243171
- H. Terajima, Families of Okamoto-Painlevé pairs and Painlevé equations, Ann. Mat. Pura Appl. (4) 186 (2007), 99-146 Zbl1232.34120MR2263893
- H. L. Turrittin, Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point, Acta Math. 93 (1955), 27-66 Zbl0064.33603MR68689
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.