Brève communication. Performance du gradient réduit généralisé avec une méthode quasi newtonienne pour la programmation non linéaire

J. Abadie; A. Haggag

RAIRO - Operations Research - Recherche Opérationnelle (1979)

  • Volume: 13, Issue: 2, page 209-216
  • ISSN: 0399-0559

How to cite

top

Abadie, J., and Haggag, A.. "Brève communication. Performance du gradient réduit généralisé avec une méthode quasi newtonienne pour la programmation non linéaire." RAIRO - Operations Research - Recherche Opérationnelle 13.2 (1979): 209-216. <http://eudml.org/doc/104729>.

@article{Abadie1979,
author = {Abadie, J., Haggag, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {Nonlinear Programming; Generalized Reduced Gradient; Comparison Of Algorithms},
language = {fre},
number = {2},
pages = {209-216},
publisher = {EDP-Sciences},
title = {Brève communication. Performance du gradient réduit généralisé avec une méthode quasi newtonienne pour la programmation non linéaire},
url = {http://eudml.org/doc/104729},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Abadie, J.
AU - Haggag, A.
TI - Brève communication. Performance du gradient réduit généralisé avec une méthode quasi newtonienne pour la programmation non linéaire
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1979
PB - EDP-Sciences
VL - 13
IS - 2
SP - 209
EP - 216
LA - fre
KW - Nonlinear Programming; Generalized Reduced Gradient; Comparison Of Algorithms
UR - http://eudml.org/doc/104729
ER -

References

top
  1. 1. J. ABADIE, Application of the GRG Algorithm to Optimal Control Problems, in J. ABADIE, ed., Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, p. 191-211. Zbl0332.90040MR437059
  2. 2. J. ABADIE, Méthode du Gradient Réduit Généralisé : le code GRGA, Note HI 1756/00, Électricité de France, Paris, février 1975. 
  3. 3. J. ABADIE, The GRG Method for Non-linear Programming, p. 335-362, in H. J. GREENBERG, ed., Design and Implementation of Optimization Software, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1978. 
  4. 4. J. ABADIE, Advances in Non-linear Programming, in K. B. HALEY, ed., Operational Research 78, North-Holland, Amsterdam, 1978, p. 900-930. MR527921
  5. 5. J. ABADIE et J. CARPENTIER, Généralisation de la méthode du gradient réduit de Wolfe au cas de contraintes non linéaire, Note HR 6678, Électricité de France Paris, (octobre 1965). Zbl0193.19101
  6. 6. J. ABADIE J. CARPENTIER, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, in R. FLETCHER, ed., Optimization, Academic Press, London, 1969, p. 37-47. Zbl0254.90049MR284206
  7. 7. J. ABADIE et J. GUIGOU, Gradient Réduit Généralisé, Note HI 069/02, Électricité de France, Paris, avril 1969. 
  8. 8. J. ABADIE et J. GUIGOU, Numerical Experiments with the GRG Method, in J. ABADIE, ed., Integer and Non-linear Programming, North-Holland, Amsterdam, 1970. Zbl0331.65041MR441347
  9. 9. J. ABADIE et A. HAGGAG, Méthode quasi-newtonienne dans une variante du Gradient Réduit Généralisé (GRGAH), Note HI 2458/00, Électricité de France, Paris, août 1977. 
  10. 10. M. AVRIEL, Nonlinear Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1976. Zbl0361.90035MR489892
  11. 11. C. G. BROYDEN, A new Double-Rank Minimization Algorithm, Notices Amer. Math. Soc, vol. 16, 1969, p. 670. 
  12. 12. A. R. COLVILLE, A Comparative Study on Non-Linear Programming Codes, Rep. 320-2949, N. Y. Scientific Center, IBM Corp, Yorktown Heights, New York, 1968. 
  13. 13. A. R. COLVILLE, Non-Linear Programming Study Results as of June1970 (private circulation). Zbl0224.90069
  14. 14. A. R. COLVILLE, A Comparative Study on Nonlinear Programming codes, in H. W. KUHN, ed., Proceedings of the Princeton Symposium on Mathematical Programming, Princeton University Press, Princeton, New Jersey, 1970. Zbl0224.90069MR325248
  15. 15. W. C. DAVIDON, Variable Metric Method for Minimization, Rep. ANL-5990, Rev. Argonne National Laboratoires, Argonne, 111., 1959. 
  16. 16. D. E. DENNIS et J. J. MORÉ, Quasi Newton Methods, Motivation and Theory, S.I.A.M. Review, vol. 19, (1), 1977, p. 46-89. Zbl0356.65041MR445812
  17. 17. L. C. W. DIXON, The Choice of Step Length, a Crucial Factor in the Performance of Variable Metric Algorithms, in F. LOOTSMA, ed., Numerical Methods for Non-Linear Optimization, Academic Press, London, 1972, p. 149-170. Zbl0267.65056MR378820
  18. 18. R. FLETCHER, A New Approach to Variable Metric Algorithms, Computer J., vol., 13, 1970, p. 317-322. Zbl0207.17402
  19. 19. R. FLETCHER et M. J. D. POWELL, A Rapidly Convergent Descent Method for Minimization, Computer J., vol. 6, 1963, p. 163-168. Zbl0132.11603MR152116
  20. 20. R. FLETCHER et C. M. REEVES, Function Minimization by Conjugale Gradients, Computer J., vol. 7, 1964, p. 149-154. Zbl0132.11701MR187375
  21. 21. D. GOLDFARB, A Family of Variable Metric Methods Derived by Variational Means, Math. Comp. vol. 24, 1970, p. 23-26. Zbl0196.18002MR258249
  22. 22. A. H. HAGGAG, Études d'algorithmes d'optimisation non linéaires : une variante de GRGA, These, C.N.R.S. n° TD493, 6-12-76, Université Pierre-et-Marie-Curie, Paris, 1976. 
  23. 23. D. M. HIMMELBLAU, A Uniform Evaluation of Unconstrained Optimization Techniques, in F. A. LOOTSMA, ed., Numerical Methods for Nonlinear Optimization, Academic Press, London, 1972, p. 69-97. Zbl0267.65053MR375771
  24. 24. D. M. HIMMELBLAU, Applied Nonlinear Programming, McGraw-Hill, New York, 1972. Zbl0241.90051
  25. 25. F. A. LOOTSMA, Performance Evaluation of Non-Linear Program Codes from the Viewpoint of a Decision Maker, Paper presented at the IFIP WG 2.5 Working Conference on Performance Evaluation on Numerical Software, Baden (Austria),11-15 December 1978, and at the 5th Conference on Mathematical Programming, Matrafüred (Hungary), 22-26 January 1979. 
  26. 26. E. SANDGREN, The Utility of Nonlinear Programming Algorithms, Ph. D. Thesis, Purdue University, December 1977. 
  27. 27. D. F. SHANNO, Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation, vol. 24, 1970, p. 617-656. Zbl0225.65073MR274029
  28. 28. R. L. STAHA, Constrained Optimization via Moving Exterior Truncations, Ph. D. Thesis, The University of Texas at Austin, May 1973. MR2623273
  29. 29. K. SCHITTKOWSKI, A Numerical Comparison of 13 Nonlinear Programming Codes with Randomly Generated Test Problems, to appear in : L. C. W. DIXON and G. P. SZEGO, eds, Numerical Optimisation of Dynamical Systems, North-Holland Publishing Company, Amsterdam, 1979. Zbl0454.65048MR605693

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.