A class of combinatorial problems with polynomially solvable large scale set covering/partitioning relaxations
Page 1 Next
M. Minoux (1987)
RAIRO - Operations Research - Recherche Opérationnelle
Peter Kirschenhofer, Helmut Prodinger (1992)
Mathematica Slovaca
Groşan, Crina, Dumitrescu, Dumitru D. (2002)
Acta Universitatis Apulensis. Mathematics - Informatics
P. Valarcher (2008)
RAIRO - Theoretical Informatics and Applications
We give a complete characterization of the class of functions that are the intensional behaviours of primitive recursive (PR) algorithms. This class is the set of primitive recursive functions that have a null basic case of recursion. This result is obtained using the property of ultimate unarity and a geometrical approach of sequential functions on N the set of positive integers.
Philippe Flajolet, Jean-Marc Steyaert (1984)
Publications du Département de mathématiques (Lyon)
J. Casasnovas, O. Valero (2008)
Mathware and Soft Computing
Jan Peckel (1978)
Časopis pro pěstování matematiky
J.J.M. Cuppen (1980/1981)
Numerische Mathematik
Robert E. Tarjan, K.L. Clarkson, Christopher J. van Wyk (1989)
Discrete & computational geometry
Yury Metelsky, Kseniya Schemeleva, Frank Werner (2017)
Discussiones Mathematicae Graph Theory
We characterize the class [...] L32 of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from [...] L32 in the class of threshold graphs, where n is the number of vertices of a tested graph.
G. Elekes (1986)
Discrete & computational geometry
Jaroslav Morávek (1981)
Aplikace matematiky
A lower bound for the number of comparisons is obtained, required by a computational problem of classification of an arbitrarily chosen point of the Euclidean space with respect to a given finite family of polyhedral (non-convex, in general) sets, covering the space. This lower bound depends, roughly speaking, on the minimum number of convex parts, into which one can decompose these polyhedral sets. The lower bound is then applied to the knapsack problem.
Dragan M. Acketa, Snežana Matić - Kekić, Joviša D. Žunić (1993)
The Yugoslav Journal of Operations Research
M. J. Atallah, C. C. Ribeiro, S. Lifschitz (1991)
RAIRO - Operations Research - Recherche Opérationnelle
Leonidas J. Guibas, Peter W. Shor, A. Aggarwal, James Saxe (1989)
Discrete & computational geometry
A. J. Kfoury (1988)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Sira Allende Allonso, Jürgen Guddat, Dieter Nowack (2004)
Kybernetika
We propose a modified standard embedding for solving the...
B. Le Saëc, I. Litovsky, B. Patrou (1996)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Bošnjak, Ivica (2002)
Novi Sad Journal of Mathematics
G.N. Frederickson, S. Rodger (1990)
Discrete & computational geometry
Page 1 Next