Polynomial bounds for the oscillation of solutions of Fuchsian systems
Gal Binyamini[1]; Sergei Yakovenko[1]
- [1] Weizmann Institute of Science Rehovot 76100 (Israël)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2891-2926
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Saugata Basu, Nicolai Vorobjov, On the number of homotopy types of fibres of a definable map, J. Lond. Math. Soc. (2) 76 (2007), 757-776 Zbl1131.14060MR2377123
- G. Binyamini, D. Novikov, S. Yakovenko, On the number of zeros of Abelian integrals. A constructive solution of the Infinitesimal Hilbert Sixteenth Problem, (2008) Zbl1207.34039
- A. A. Glutsyuk, Upper bounds of topology of complex polynomials in two variables, Mosc. Math. J. 5 (2005), 781-828, 972 Zbl1186.14013MR2266460
- A. A. Glutsyuk, An explicit formula for period determinant, Ann. Inst. Fourier (Grenoble) 56 (2006), 887-917 Zbl1140.32011MR2266882
- A. A. Glutsyuk, Y. Ilyashenko, The restricted infinitesimal Hilbert 16th problem, Dokl. Akad. Nauk 407 (2006), 154-159 Zbl1134.34019MR2348308
- A. A. Glutsyuk, Y. Ilyashenko, Restricted version of the infinitesimal Hilbert 16th problem, Mosc. Math. J. 7 (2007), 281-325, 351 Zbl1134.34019MR2337884
- D. Y. Grigor’ev, N. N. Vorobjov, Solving systems of polynomial inequalities in subexponential time, J. Symbolic Comput. 5 (1988), 37-64 Zbl0662.12001MR949112
- A. Grigoriev, Singular perturbations and zeros of Abelian integrals, (2001), Rehovot
- A. Grigoriev, Uniform asymptotic bound on the number of zeros of Abelian integrals, (2003)
- Joos Heintz, Marie-Françoise Roy, Pablo Solernó, Sur la complexité du principe de Tarski-Seidenberg, Bull. Soc. Math. France 118 (1990), 101-126 Zbl0767.03017MR1077090
- Y. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 301-354 (electronic) Zbl1004.34017MR1898209
- Y. Ilyashenko, Some open problems in real and complex dynamical systems, Nonlinearity 21 (2008), T101-T107 Zbl1183.37016MR2425322
- Y. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, 86 (2008), American Mathematical Society, Providence, RI Zbl1186.34001MR2363178
- A. G. Khovanskiĭ, Real analytic manifolds with the property of finiteness, and complex abelian integrals, Funktsional. Anal. i Prilozhen. 18 (1984), 40-50 Zbl0584.32016MR745698
- A. G. Khovanskiĭ, Fewnomials, 88 (1991), American Mathematical Society, Providence, RI Zbl0728.12002MR1108621
- B. Ja. Levin, Distribution of zeros of entire functions, 5 (1980), American Mathematical Society, Providence, R.I. Zbl0152.06703MR589888
- D. Novikov, Systems of linear ordinary differential equations with bounded coefficients may have very oscillating solutions, Proc. Amer. Math. Soc. 129 (2001), 3753-3755 (electronic) Zbl0983.34019MR1860513
- D. Novikov, S. Yakovenko, Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 55-65 (electronic) Zbl0922.58076MR1679454
- D. Novikov, S. Yakovenko, Redundant Picard-Fuchs system for abelian integrals, J. Differential Equations 177 (2001), 267-306 Zbl1011.37042MR1876646
- M. Roitman, S. Yakovenko, On the number of zeros of analytic functions in a neighborhood of a Fuchsian singular point with real spectrum, Math. Res. Lett. 3 (1996), 359-371 Zbl0871.34005MR1397684
- A. N. Varchenko, Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles, Funktsional. Anal. i Prilozhen. 18 (1984), 14-25 Zbl0545.58038MR745696
- Sergei Yakovenko, On functions and curves defined by ordinary differential equations, The Arnoldfest (Toronto, ON, 1997) 24 (1999), 497-525, Amer. Math. Soc., Providence, RI Zbl0949.34023MR1733590
- Sergei Yakovenko, Quantitative theory of ordinary differential equations and the tangential Hilbert 16th problem, On finiteness in differential equations and Diophantine geometry 24 (2005), 41-109, Amer. Math. Soc., Providence, RI Zbl1104.34025MR2180125
- Sergei Yakovenko, Oscillation of linear ordinary differential equations: on a theorem of A. Grigoriev, J. Dyn. Control Syst. 12 (2006), 433-449 Zbl1131.34028MR2233029