An explicit formula for period determinant

Alexey A. Glutsyuk[1]

  • [1] Laboratoire J.-V.Poncelet (UMI 2615 du CNRS et Université Indépendante de Moscou) Permanent address: CNRS UMR 5669 Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46 allée d’Italie 69364 Lyon Cedex 07 (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 887-917
  • ISSN: 0373-0956

Abstract

top
We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.

How to cite

top

Glutsyuk, Alexey A.. "An explicit formula for period determinant." Annales de l’institut Fourier 56.4 (2006): 887-917. <http://eudml.org/doc/10175>.

@article{Glutsyuk2006,
abstract = {We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.},
affiliation = {Laboratoire J.-V.Poncelet (UMI 2615 du CNRS et Université Indépendante de Moscou) Permanent address: CNRS UMR 5669 Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46 allée d’Italie 69364 Lyon Cedex 07 (France)},
author = {Glutsyuk, Alexey A.},
journal = {Annales de l’institut Fourier},
keywords = {Complex polynomial in two variables; homology of nonsingular level curve; monodromy; abelian integral; gradient ideal; period determinant; period matrices; vanishing cycles; Abelian integrals},
language = {eng},
number = {4},
pages = {887-917},
publisher = {Association des Annales de l’institut Fourier},
title = {An explicit formula for period determinant},
url = {http://eudml.org/doc/10175},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Glutsyuk, Alexey A.
TI - An explicit formula for period determinant
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 887
EP - 917
AB - We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.
LA - eng
KW - Complex polynomial in two variables; homology of nonsingular level curve; monodromy; abelian integral; gradient ideal; period determinant; period matrices; vanishing cycles; Abelian integrals
UR - http://eudml.org/doc/10175
ER -

References

top
  1. V. I. Arnold, A. N. Varchenko, S. M. Gussein-Zade, Singularities of differentiable mappings, (1982), Nauka Publ., Moscow Zbl0545.58001MR685918
  2. P Deligne, Équations différentielles à points singuliers réguliers, Lect. Notes in Math. (1970), Springer-Verlag, Berlin-New York Zbl0244.14004MR417174
  3. A. Dimca, M. Saito, Algebraic Gauss-Manin systems and Brieskorn modules, American J. Math. 123 (2001), 163-184 Zbl0990.14004MR1827281
  4. A. Erdelyi (Editor), Highest transcendental functions, Bateman manuscript project 1 (1953), McGraw Hill Zbl0051.30303
  5. L. Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), 571-584 Zbl0964.32022MR1668534
  6. A. A. Glutsyuk, Upper bounds of topology of complex polynomials in two variables Zbl1186.14013
  7. A. A. Glutsyuk, Yu. S. Ilyashenko, Restricted version of the infinitesimal Hilbert 16th problem 
  8. Yu. S. Ilyashenko, Example of equations d w / d z = P ( z , w ) / Q ( z , w ) having infinite number of limit cycles and arbitrary high Petrovsky-Landis genus, Math. Sbornik 80 (1969), 388-404 MR259239
  9. Yu. S. Ilyashenko, Generation of limit cycles under the perturbation of the equation d w / d z = - R z / R w , where R ( z , w ) is a polynomial, Math. Sbornik 78 (1969), 360-373 Zbl0194.40102MR243155
  10. S. Lang, Algebra, (1965), Addison-Wesley Zbl0193.34701MR197234
  11. J. Milnor, Singular points of complex hypersurfaces (in Russian), (1971), M. Mir Zbl0224.57014MR356089
  12. D. Novikov, Modules of Abelian integrals and Picard-Fuchs systems, Nonlinearity 15 (2002), 1435-1444 Zbl1073.14513MR1925422
  13. I. A. Pushkar, A multidimensional generalization of Ilyashenko’s theorem on abelian integrals (in Russian), Funk. Anal. i Prilozhen. 31 (1997), 34-44, 95 Zbl0930.37036MR1475322
  14. A. N. Varchenko, Critical values and the determinant of periods (in Russian), Uspekhi Mat. Nauk 268 (1989), 235-236 Zbl0716.32024MR1023108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.