Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph
P. Miliotis; G. Laporte; Y. Nobert
RAIRO - Operations Research - Recherche Opérationnelle (1981)
- Volume: 15, Issue: 3, page 233-239
- ISSN: 0399-0559
Access Full Article
topHow to cite
topMiliotis, P., Laporte, G., and Nobert, Y.. "Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph." RAIRO - Operations Research - Recherche Opérationnelle 15.3 (1981): 233-239. <http://eudml.org/doc/104787>.
@article{Miliotis1981,
author = {Miliotis, P., Laporte, G., Nobert, Y.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {computational comparison of methods; shortest complete cycle; circuit; equivalent Hamiltonian cycle problem; computational experience; graphs with random complete distance matrices},
language = {eng},
number = {3},
pages = {233-239},
publisher = {EDP-Sciences},
title = {Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph},
url = {http://eudml.org/doc/104787},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Miliotis, P.
AU - Laporte, G.
AU - Nobert, Y.
TI - Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1981
PB - EDP-Sciences
VL - 15
IS - 3
SP - 233
EP - 239
LA - eng
KW - computational comparison of methods; shortest complete cycle; circuit; equivalent Hamiltonian cycle problem; computational experience; graphs with random complete distance matrices
UR - http://eudml.org/doc/104787
ER -
References
top- 1. M. BELLMORE and G. L. NEMHAUSER, The Travelling Salesman Problem; a Survey, Operations Research, Vol. 16, 1968, pp. 538-558. Zbl0213.44604MR234711
- 2. N. CHRISTOFIDES, The Travelling Salesman Problem, published in "Combinatorial Optimisation" by CHRISTOFIDES et al., Wiley, 1979, pp. 131-149. Zbl0415.90057
- G. B. DANTZIG, D. R. FULKERSON and S. M. JOHNSON, Solution of a Larger Scale Traveling-Salesman Problem, Operations Research, Vol. 2, 1954, pp. 393-419. Zbl1187.90007MR70932
- 4. J. EDMONDS and E. JOHNSON, Matching, Euler Tours and the Chinese Postman, Mathematical Programming, Vol. 5, 1973, pp. 88-124. Zbl0281.90073MR321801
- 5. L. EULER, Commentationes Arithmeticae Collectae, Saint-Petersbourg, 1766, pp. 337-338.
- 6. W. W. HARDGRAVE and G. L. NEMHAUSER, On the Relation between the TravellingSalesman Problem and the Longest Path Problem, Operations Research, Vol. 10, 1962, pp. 647-657. Zbl0124.36204MR143651
- 7. A . H . LAND and S. POWELL, Fortran Codes for Mathematical Programming, Wiley, 1973. Zbl0278.68036
- 8. P. MILIOTIS, Integer Programming Approaches to the Travelling Salesman Problem, Mathematical Programming, Vol. 10, 1976, pp. 367-378. Zbl0337.90041MR441337
- 9. P. MILIOTIS, Using Cutting Planes to Solve the Symmetrie Travelling SalesmanProblem, Mathematical Programming, Vol. 15, 1978, pp. 117-188. Zbl0393.90059MR1552870
- 10. J. D. MURCHLAND, A Fixed Matrix Method for all Shortest Distances in a DirectedGraph and for the Inverse Problem, Ph. D. Dissertation, Karlsruhe, 1970. MR321787
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.