Optimal tour planning with specified nodes
Gilbert Laporte; Hélène Mercure; Yves Norbert
RAIRO - Operations Research - Recherche Opérationnelle (1984)
- Volume: 18, Issue: 3, page 203-210
- ISSN: 0399-0559
Access Full Article
topHow to cite
topLaporte, Gilbert, Mercure, Hélène, and Norbert, Yves. "Optimal tour planning with specified nodes." RAIRO - Operations Research - Recherche Opérationnelle 18.3 (1984): 203-210. <http://eudml.org/doc/104853>.
@article{Laporte1984,
author = {Laporte, Gilbert, Mercure, Hélène, Norbert, Yves},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {travelling salesman; specified nodes; shortest circuit; algorithm},
language = {eng},
number = {3},
pages = {203-210},
publisher = {EDP-Sciences},
title = {Optimal tour planning with specified nodes},
url = {http://eudml.org/doc/104853},
volume = {18},
year = {1984},
}
TY - JOUR
AU - Laporte, Gilbert
AU - Mercure, Hélène
AU - Norbert, Yves
TI - Optimal tour planning with specified nodes
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1984
PB - EDP-Sciences
VL - 18
IS - 3
SP - 203
EP - 210
LA - eng
KW - travelling salesman; specified nodes; shortest circuit; algorithm
UR - http://eudml.org/doc/104853
ER -
References
top- 1. G. CARPANETO and P. TOTH, Solution of the Assignment Problem, ACM Transactions on Mathematical Software, Vol, 6, No. 1, 1980, pp. 104-111.
- 2. G. CARPANETO and P. TOTH, Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem, Management Science, Vol. 26, No. 7. 1980, pp. 736-743. Zbl0445.90089MR591295
- 3. G. B. DANTZIG, D. R. FULKERSON and S. M. JOHNSON, Solution of a Large Scale Travelling Salesman Problem, Operations Research, Vol. 2, 1954, pp.393-410. Zbl1187.90007MR70932
- 4. S. E. DREYFUS, An Appraisal of Some Shortest-Path Algorithms, Operations Research, Vol. 17, 1969, pp. 395-412. Zbl0172.44202
- 5. R. S. GARFINKEL, On Partitioning the Feasible Set in a Branch-and-Bound Algorithm for the Asymmetric Travelling Salesman Problem, Operations Research, Vol. 21, 1973, pp. 340-343. Zbl0266.90041MR353995
- 6. M. HELD, Influences of the Travelling Salesman Problem, Paper presented at the XI. International Symposium on Mathematical Programming, Bonn, 1982.
- 7. T. IBARAKI, Shortest Path Problems Visiting Specified Nodes, Electronics and Communications in Japan, Vol. 53-A, 1970, pp. 10-18. MR307962
- 8. G. LAPORTE and Y. NOBERT, A Branch and Bound Algorithm for the Capacitated Vehicle Routing Problem, Operations Research Spektrum, Vol. 5, 1983, pp. 77-85. Zbl0523.90088
- 9. G. LAPORTE and Y. NOBERT, Finding the Shortest Cycle through k Specified Nodes, Cahiers du GERAD G-83-07, Ecole des Hautes Études Commerciales de Montréal, 1983, 11pages. Zbl0534.05039MR734366
- 10. G. LAPORTE, M. DESROCHERS and Y. NOBERT, Two Exact Algorithme for the Distance Constrained Vehicle Routing Problem, Networks, Vol 14, 1984, pp. 161-172. Zbl0538.90093
- 11. P. MILIOTIS, G. LAPORTE and Y. NOBERT, Computational Comparison of Two Methods for Finding the Shortest Complete Cycle or Circuit in a Graph, R.A.I.R.O, (recherche opérationnelle), Vol. 15, 1981, pp.233-239. Zbl0472.90066MR637194
- 12. J. MUNKRES, Algorithms for the Assignment and Transportation Problems, Journal of S.I.A.M., Vol. 5, No. 1, 1957, p. 32. Zbl0083.15302MR93429
- 13. J. P. SAKSENA and S. KUMAR, The Routing Problem with "K" Specified Nodes, Operations Research, Vol. 14, 1966, pp. 909-913. Zbl0142.16803
- 14. D. M. SHAPIRO, Algorithms for the Solution of the Optimal Cost and Bottleneck Travelling Salesman Problems, Ph. D. Thesis, Washington University, 1966, 157 pp.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.