Unicité dans des solutions du système de Navier-Stokes : cas des domaines lipschitziens
- [1] LATP - UMR 6632 - Case cour A Université Aix-Marseille 3 Av. Escadrille Normandie-Niemen 13397 Marseille Cédex France
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 1, page 107-116
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topMonniaux, Sylvie. "Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens." Annales mathématiques Blaise Pascal 10.1 (2003): 107-116. <http://eudml.org/doc/10479>.
@article{Monniaux2003,
abstract = {On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans $\{\mathcal\{C\}\}([0,T) ; L^d(\Omega )^d)$, où $\Omega $ est un domaine lipschitzien borné de $\mathbb\{R\}^d$ ($d\ge 3$).},
affiliation = {LATP - UMR 6632 - Case cour A Université Aix-Marseille 3 Av. Escadrille Normandie-Niemen 13397 Marseille Cédex France},
author = {Monniaux, Sylvie},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Navier-Stokes system; uniqueness; Lipschitz domain; non autonomous Stokes problem},
language = {fre},
month = {1},
number = {1},
pages = {107-116},
publisher = {Annales mathématiques Blaise Pascal},
title = {Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens},
url = {http://eudml.org/doc/10479},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Monniaux, Sylvie
TI - Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens
JO - Annales mathématiques Blaise Pascal
DA - 2003/1//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 1
SP - 107
EP - 116
AB - On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans ${\mathcal{C}}([0,T) ; L^d(\Omega )^d)$, où $\Omega $ est un domaine lipschitzien borné de $\mathbb{R}^d$ ($d\ge 3$).
LA - fre
KW - Navier-Stokes system; uniqueness; Lipschitz domain; non autonomous Stokes problem
UR - http://eudml.org/doc/10479
ER -
References
top- H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), 16-98 Zbl0989.35107MR1755865
- M. Cannone, MR 2002j :76036, Mathematical Reviews, American Mathematical Society (2002)
- N. Depauw, Solutions des équations de Navier-Stokes incompressibles dans un domaine extérieur, Rev. Mat. Iberoamericana 17 (2001), 21-68 Zbl0984.35126MR1846090
- P. Deuring, The Stokes resolvent in 3D domains with conical boundary points : nonregularity in -spaces, Adv. Differential Equations 6 (2001), 175-228 Zbl1038.35053MR1799750
- G. Furioli, P.-G. Lemarié-Rieusset et E. Terraneo, Unicité dans et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana 16 (2000), 605-667 Zbl0970.35101MR1813331
- E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal. 159 (1998), 323-368 Zbl0930.35045MR1658089
- P.-G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, (2002), Chapman & Hall, Boca Raton Zbl1034.35093MR1938147
- P.-L. Lions, N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in , Comm. Partial Differential Equations 26 (2001), 2211-2226 Zbl1086.35077MR1876415
- Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA) (1997), 105-212, Int. Press, Boston, MA Zbl0926.35115MR1724946
- S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal regularity, C. R. Acad. Sci. Paris, Série I 328 (1999), 663-668 Zbl0931.35127MR1680809
- S. Monniaux, Existence of solutions in critical spaces of the Navier-Stokes system in 3D bounded Lipschitz domains, (2002) Zbl1034.35095
- S. Monniaux, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal. 195 (2002), 1-11 Zbl1034.35095MR1934350
- Z. Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders, Amer. J. Math. 113 (1991), 293-373 Zbl0734.35080MR1099449
- M. Taylor, Incompressible fluid flows on rough domains, Semigroups of operators : theory and applications (Newport Beach, CA, 1998) (2000), 320-334, Birkhäuser, Basel Zbl0965.35120MR1788895
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.