Unicité dans L d des solutions du système de Navier-Stokes  : cas des domaines lipschitziens

Sylvie Monniaux[1]

  • [1] LATP - UMR 6632 - Case cour A Université Aix-Marseille 3 Av. Escadrille Normandie-Niemen 13397 Marseille Cédex France

Annales mathématiques Blaise Pascal (2003)

  • Volume: 10, Issue: 1, page 107-116
  • ISSN: 1259-1734

Abstract

top
On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans 𝒞 ( [ 0 , T ) ; L d ( Ω ) d ) , où Ω est un domaine lipschitzien borné de d ( d 3 ).

How to cite

top

Monniaux, Sylvie. "Unicité dans $L^d$ des solutions du système de Navier-Stokes  : cas des domaines lipschitziens." Annales mathématiques Blaise Pascal 10.1 (2003): 107-116. <http://eudml.org/doc/10479>.

@article{Monniaux2003,
abstract = {On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans $\{\mathcal\{C\}\}([0,T) ; L^d(\Omega )^d)$, où $\Omega $ est un domaine lipschitzien borné de $\mathbb\{R\}^d$ ($d\ge 3$).},
affiliation = {LATP - UMR 6632 - Case cour A Université Aix-Marseille 3 Av. Escadrille Normandie-Niemen 13397 Marseille Cédex France},
author = {Monniaux, Sylvie},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Navier-Stokes system; uniqueness; Lipschitz domain; non autonomous Stokes problem},
language = {fre},
month = {1},
number = {1},
pages = {107-116},
publisher = {Annales mathématiques Blaise Pascal},
title = {Unicité dans $L^d$ des solutions du système de Navier-Stokes  : cas des domaines lipschitziens},
url = {http://eudml.org/doc/10479},
volume = {10},
year = {2003},
}

TY - JOUR
AU - Monniaux, Sylvie
TI - Unicité dans $L^d$ des solutions du système de Navier-Stokes  : cas des domaines lipschitziens
JO - Annales mathématiques Blaise Pascal
DA - 2003/1//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 1
SP - 107
EP - 116
AB - On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans ${\mathcal{C}}([0,T) ; L^d(\Omega )^d)$, où $\Omega $ est un domaine lipschitzien borné de $\mathbb{R}^d$ ($d\ge 3$).
LA - fre
KW - Navier-Stokes system; uniqueness; Lipschitz domain; non autonomous Stokes problem
UR - http://eudml.org/doc/10479
ER -

References

top
  1. H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), 16-98 Zbl0989.35107MR1755865
  2. M. Cannone, MR 2002j :76036, Mathematical Reviews, American Mathematical Society (2002) 
  3. N. Depauw, Solutions des équations de Navier-Stokes incompressibles dans un domaine extérieur, Rev. Mat. Iberoamericana 17 (2001), 21-68 Zbl0984.35126MR1846090
  4. P. Deuring, The Stokes resolvent in 3D domains with conical boundary points  : nonregularity in L p -spaces, Adv. Differential Equations 6 (2001), 175-228 Zbl1038.35053MR1799750
  5. G. Furioli, P.-G. Lemarié-Rieusset et E. Terraneo, Unicité dans L 3 ( R 3 ) 3 et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana 16 (2000), 605-667 Zbl0970.35101MR1813331
  6. E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal. 159 (1998), 323-368 Zbl0930.35045MR1658089
  7. P.-G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem, (2002), Chapman & Hall, Boca Raton Zbl1034.35093MR1938147
  8. P.-L. Lions, N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in L N , Comm. Partial Differential Equations 26 (2001), 2211-2226 Zbl1086.35077MR1876415
  9. Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA) (1997), 105-212, Int. Press, Boston, MA Zbl0926.35115MR1724946
  10. S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal L p - regularity, C. R. Acad. Sci. Paris, Série I 328 (1999), 663-668 Zbl0931.35127MR1680809
  11. S. Monniaux, Existence of solutions in critical spaces of the Navier-Stokes system in 3D bounded Lipschitz domains, (2002) Zbl1034.35095
  12. S. Monniaux, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal. 195 (2002), 1-11 Zbl1034.35095MR1934350
  13. Z. Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders, Amer. J. Math. 113 (1991), 293-373 Zbl0734.35080MR1099449
  14. M. Taylor, Incompressible fluid flows on rough domains, Semigroups of operators : theory and applications (Newport Beach, CA, 1998) (2000), 320-334, Birkhäuser, Basel Zbl0965.35120MR1788895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.