Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems
Youssef Akdim[1]; Elhoussine Azroul[1]; Abdelmoujib Benkirane[1]
- [1] Département de Mathématiques et Informatique Faculté des Sciences Dhar-Mahraz B.P 1796 Atlas Fès. MAROC
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 1, page 1-20
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAkdim, Youssef, Azroul, Elhoussine, and Benkirane, Abdelmoujib. "Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems." Annales mathématiques Blaise Pascal 10.1 (2003): 1-20. <http://eudml.org/doc/10483>.
@article{Akdim2003,
abstract = {An existence theorem is proved, for a quasilinear degenerated elliptic inequality involving nonlinear operators of the form $Au+g(x,u,\nabla u)$, where $A$ is a Leray-Lions operator from $W_0^\{1,p\}(\Omega ,w)$ into its dual, while $g(x,s,\xi )$ is a nonlinear term which has a growth condition with respect to $\xi $ and no growth with respect to $s$, but it satisfies a sign condition on $s$, the second term belongs to $W^\{-1,p^\{\prime\}\}(\Omega ,w^*)$.},
affiliation = {Département de Mathématiques et Informatique Faculté des Sciences Dhar-Mahraz B.P 1796 Atlas Fès. MAROC; Département de Mathématiques et Informatique Faculté des Sciences Dhar-Mahraz B.P 1796 Atlas Fès. MAROC; Département de Mathématiques et Informatique Faculté des Sciences Dhar-Mahraz B.P 1796 Atlas Fès. MAROC},
author = {Akdim, Youssef, Azroul, Elhoussine, Benkirane, Abdelmoujib},
journal = {Annales mathématiques Blaise Pascal},
keywords = {quasilinear degenerated elliptic BVP; unilateral boundary condition; a priori estimates},
language = {eng},
month = {1},
number = {1},
pages = {1-20},
publisher = {Annales mathématiques Blaise Pascal},
title = {Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems},
url = {http://eudml.org/doc/10483},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Akdim, Youssef
AU - Azroul, Elhoussine
AU - Benkirane, Abdelmoujib
TI - Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems
JO - Annales mathématiques Blaise Pascal
DA - 2003/1//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 1
SP - 1
EP - 20
AB - An existence theorem is proved, for a quasilinear degenerated elliptic inequality involving nonlinear operators of the form $Au+g(x,u,\nabla u)$, where $A$ is a Leray-Lions operator from $W_0^{1,p}(\Omega ,w)$ into its dual, while $g(x,s,\xi )$ is a nonlinear term which has a growth condition with respect to $\xi $ and no growth with respect to $s$, but it satisfies a sign condition on $s$, the second term belongs to $W^{-1,p^{\prime}}(\Omega ,w^*)$.
LA - eng
KW - quasilinear degenerated elliptic BVP; unilateral boundary condition; a priori estimates
UR - http://eudml.org/doc/10483
ER -
References
top- Y. Akdim, E. Azroul, A. Benkirane, Existence of solutions for quasilinear degenerated elliptic equations, Electronic J. Diff. Eqns. 2001 (2001), 1-19 Zbl0988.35065MR1872050
- A. Benkirane, A. Elmahi, Strongly nonlinear elliptic unilateral problem having natural growth terms and data, Rendiconti di Matematica 18 (1998), 289-303 Zbl0918.35059MR1659834
- A. Bensoussan, L. Boccardo, F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré 5 (1988), 347-364 Zbl0696.35042MR963104
- P. Drabek, A. Kufner, V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. 58 (1998), 213-221 Zbl0913.35051MR1642031
- P. Drabek, A. Kufner, F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, (1997), De Gruyter Series in Nonlinear Analysis and Applications, New York Zbl0894.35002MR1460729
- P. Drabek, F. Nicolosi, Existence of Bounded Solutions for Some Degenerated Quasilinear Elliptic Equations, Annali di Mathematica pura ed applicata CLXV (1993), 217-238 Zbl0806.35047MR1271420
- J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod, Paris Zbl0189.40603MR259693
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.