Existence of solutions of degenerated unilateral problems with L 1 data

Lahsen Aharouch[1]; Youssef Akdim[1]

  • [1] Faculté des Sciences Dhar-Mahraz Dép. de Math. et Informatique B.P 1796 Atlas Fès. Fès MAROC

Annales mathématiques Blaise Pascal (2004)

  • Volume: 11, Issue: 1, page 47-66
  • ISSN: 1259-1734

Abstract

top
In this paper, we shall be concerned with the existence result of the Degenerated unilateral problem associated to the equation of the type A u + g ( x , u , u ) = f - div F , where A is a Leray-Lions operator and g is a Carathéodory function having natural growth with respect to | u | and satisfying the sign condition. The second term is such that, f L 1 ( Ω ) and F Π i = 1 N L p ( Ω , w i 1 - p ) .

How to cite

top

Aharouch, Lahsen, and Akdim, Youssef. "Existence of solutions of degenerated unilateral problems with $L^1$ data." Annales mathématiques Blaise Pascal 11.1 (2004): 47-66. <http://eudml.org/doc/10499>.

@article{Aharouch2004,
abstract = {In this paper, we shall be concerned with the existence result of the Degenerated unilateral problem associated to the equation of the type $Au + g(x, u, \nabla u) = f - \{\rm div \}F,$ where $A$ is a Leray-Lions operator and $g$ is a Carathéodory function having natural growth with respect to $|\nabla u|$ and satisfying the sign condition. The second term is such that, $f\in L^1(\Omega )$ and $ F\in \Pi _\{i=1\}^N L^\{p^\{\prime\}\}(\Omega , w_i^\{1-p^\{\prime\}\})$.},
affiliation = {Faculté des Sciences Dhar-Mahraz Dép. de Math. et Informatique B.P 1796 Atlas Fès. Fès MAROC; Faculté des Sciences Dhar-Mahraz Dép. de Math. et Informatique B.P 1796 Atlas Fès. Fès MAROC},
author = {Aharouch, Lahsen, Akdim, Youssef},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
month = {1},
number = {1},
pages = {47-66},
publisher = {Annales mathématiques Blaise Pascal},
title = {Existence of solutions of degenerated unilateral problems with $L^1$ data},
url = {http://eudml.org/doc/10499},
volume = {11},
year = {2004},
}

TY - JOUR
AU - Aharouch, Lahsen
AU - Akdim, Youssef
TI - Existence of solutions of degenerated unilateral problems with $L^1$ data
JO - Annales mathématiques Blaise Pascal
DA - 2004/1//
PB - Annales mathématiques Blaise Pascal
VL - 11
IS - 1
SP - 47
EP - 66
AB - In this paper, we shall be concerned with the existence result of the Degenerated unilateral problem associated to the equation of the type $Au + g(x, u, \nabla u) = f - {\rm div }F,$ where $A$ is a Leray-Lions operator and $g$ is a Carathéodory function having natural growth with respect to $|\nabla u|$ and satisfying the sign condition. The second term is such that, $f\in L^1(\Omega )$ and $ F\in \Pi _{i=1}^N L^{p^{\prime}}(\Omega , w_i^{1-p^{\prime}})$.
LA - eng
UR - http://eudml.org/doc/10499
ER -

References

top
  1. Y. Akdim, E. Azroul, A. Benkirane, Existence of solutions for quasilinear degenerated elliptic equations, Electronic J. Diff. Eqns. 2001 (2001), 1-19 Zbl0988.35065MR1872050
  2. Y. Akdim, E. Azroul, A. Benkirane, Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems, Annale Mathématique Blaise Pascal 10 (2003), 1-20 Zbl1050.35022MR1990009
  3. E. Azroul, A. Benkirane, O. Filali, Strongly nonlinear degenerated unilateral problems with L 1 data, Electronic J. Diff. Eqns. (Conf. 09. 2002), 46-64 Zbl1034.35050
  4. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, An L 1 -theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), 240-273 Zbl0866.35037MR1354907
  5. L. Boccardo, T. Gallouët, Non-linear Elliptic Equations with right hand side Measures, commun. In partial Differential Equations 17 (1992), 641-655 Zbl0812.35043MR1163440
  6. L. Boccardo, T. Gallouët, Strongly non-linear Elliptic Equations having natural growth and L 1 data, Nonlinear Anal. 19 (1992), 573-578 Zbl0795.35031MR1183664
  7. L. Boccardo, T. Gallouët, F. Murat, A unified presentation of tow existence results for problems with natural growth, in : Progress in Partial Differential Equations : The Metz Surveys 2, M. Chipot (ed), Pitman Res. Notes Math. Ser. 296, Longman (1993), 127-137 Zbl0806.35033MR1248641
  8. L. Boccardo, F. Murat, J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Math. Pura Appl. 152 (1988), 183-196 Zbl0687.35042MR980979
  9. G. Dalmaso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup Pisa Cl. Sci 12 (1999), 741-808 Zbl0958.35045MR1760541
  10. P. Drabek, A. Kufner, F. Nicolosi, Nonlinear elliptic equations, singular and degenerate cases, (1996), University of West Bohemia Zbl0870.35043
  11. A. Elmahi, D. Meskine, Unilateral elleptic problems in L 1 with natural growth terms Zbl1097.35062MR2101516
  12. A. Porretta, Existence for elliptic equations in L 1 having lower order terms with natural growth, Portugal. Math. 57 (2000), 179-190 Zbl0963.35068MR1759814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.