A Classical Olivier’s Theorem and Statistical Convergence
Tibor Šalát[1]; Vladimír Toma[1]
- [1] Comenius University Department of Mathematics Mlynská dolina 84248 Bratislava SLOVAK REPUBLIC
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 2, page 305-313
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topŠalát, Tibor, and Toma, Vladimír. "A Classical Olivier’s Theorem and Statistical Convergence." Annales mathématiques Blaise Pascal 10.2 (2003): 305-313. <http://eudml.org/doc/10492>.
@article{Šalát2003,
abstract = {L. Olivier proved in 1827 the classical result about the speed of convergence to zero of the terms of a convergent series with positive and decreasing terms. We prove that this result remains true if we omit the monotonicity of the terms of the series when the limit operation is replaced by the statistical limit, or some generalizations of this concept.},
affiliation = {Comenius University Department of Mathematics Mlynská dolina 84248 Bratislava SLOVAK REPUBLIC; Comenius University Department of Mathematics Mlynská dolina 84248 Bratislava SLOVAK REPUBLIC},
author = {Šalát, Tibor, Toma, Vladimír},
journal = {Annales mathématiques Blaise Pascal},
keywords = {classical Olivier's theorem; statistical convergence; statistical limit; monotonicity condition},
language = {eng},
month = {7},
number = {2},
pages = {305-313},
publisher = {Annales mathématiques Blaise Pascal},
title = {A Classical Olivier’s Theorem and Statistical Convergence},
url = {http://eudml.org/doc/10492},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Šalát, Tibor
AU - Toma, Vladimír
TI - A Classical Olivier’s Theorem and Statistical Convergence
JO - Annales mathématiques Blaise Pascal
DA - 2003/7//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 2
SP - 305
EP - 313
AB - L. Olivier proved in 1827 the classical result about the speed of convergence to zero of the terms of a convergent series with positive and decreasing terms. We prove that this result remains true if we omit the monotonicity of the terms of the series when the limit operation is replaced by the statistical limit, or some generalizations of this concept.
LA - eng
KW - classical Olivier's theorem; statistical convergence; statistical limit; monotonicity condition
UR - http://eudml.org/doc/10492
ER -
References
top- T. C. Brown, A. R. Freedman, The uniform density of sets of integers and Fermat’s last theorem, C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1-6 Zbl0701.11011MR1043085
- H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951), 241-244 Zbl0044.33605MR48548
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313 Zbl0588.40001MR816582
- H. Halberstam, K. F. Roth, Sequences I, (1966), Oxford University Press, Oxford Zbl0141.04405MR210679
- K. Knopp, Theorie und Anwendung der unendlichen Reihen 3. Aufl., (1931), Springer Zbl0001.39201MR28430
- P. Kostyrko, T. Šalát, W. Wilczński, -convergence, Real Anal. Exch. 26 (2000-2001), 669-689 Zbl1021.40001MR1844385
- L. Olivier, Remarques sur les séries infinies et leur convergence, J. reine angew. Math. 2 (1827), 31-44
- B. J. Powel, T. Šalát, Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ. Inst. Math.(Beograd) 50(64) (1991), 60-70 Zbl0745.11008MR1252159
- I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375 Zbl0089.04002MR104946
- T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150 Zbl0437.40003MR587239
Citations in EuDML Documents
top- Alain Faisant, Georges Grekos, Ladislav Mišík, Some generalizations of Olivier's theorem
- Rita Giuliano Antonini, Georges Grekos, Weighted uniform densities
- Georges Grekos, Vladimír Toma, Jana Tomanová, A note on uniform or Banach density
- Ladislav Matejíčka, Some remarks on -faster convergent infinite series
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.