A note on uniform or Banach density
Georges Grekos[1]; Vladimír Toma[2]; Jana Tomanová[3]
- [1] Department of Mathematics Université de Saint-Etienne 23, rue du Docteur Paul Michelon F-42023 Saint-Etienne Cédex 2 France
- [2] Department of Mathematical and Numerical Analysis Comenius University Mlynská dolina 842 48 Bratislava Slovakia
- [3] Department of Algebra and Number Theory Comenius University Mlynská dolina 842 48 Bratislava Slovakia
Annales mathématiques Blaise Pascal (2010)
- Volume: 17, Issue: 1, page 153-163
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topGrekos, Georges, Toma, Vladimír, and Tomanová, Jana. "A note on uniform or Banach density." Annales mathématiques Blaise Pascal 17.1 (2010): 153-163. <http://eudml.org/doc/116345>.
@article{Grekos2010,
abstract = {In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.},
affiliation = {Department of Mathematics Université de Saint-Etienne 23, rue du Docteur Paul Michelon F-42023 Saint-Etienne Cédex 2 France; Department of Mathematical and Numerical Analysis Comenius University Mlynská dolina 842 48 Bratislava Slovakia; Department of Algebra and Number Theory Comenius University Mlynská dolina 842 48 Bratislava Slovakia},
author = {Grekos, Georges, Toma, Vladimír, Tomanová, Jana},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Banach density; uniform density},
language = {eng},
month = {1},
number = {1},
pages = {153-163},
publisher = {Annales mathématiques Blaise Pascal},
title = {A note on uniform or Banach density},
url = {http://eudml.org/doc/116345},
volume = {17},
year = {2010},
}
TY - JOUR
AU - Grekos, Georges
AU - Toma, Vladimír
AU - Tomanová, Jana
TI - A note on uniform or Banach density
JO - Annales mathématiques Blaise Pascal
DA - 2010/1//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 1
SP - 153
EP - 163
AB - In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.
LA - eng
KW - Banach density; uniform density
UR - http://eudml.org/doc/116345
ER -
References
top- Vitaly Bergelson, Sets of recurrence of -actions and properties of sets of differences in , J. London Math. Soc. (2) 31 (1985), 295-304 Zbl0579.10029MR809951
- Vitaly Bergelson, Ergodic Ramsey theory, Contemporary Math. 65 (1987), 63-87 Zbl0642.10052MR891243
- Vitaly Bergelson, B. Host, B. Kra, Multiple recurrence and nilsequences. With an appendix by Imre Ruzsa, Invent. Math. 160 (2005), 261-303 Zbl1087.28007MR2138068
- T. C. Brown, A. R. Freedman, Arithmetic Progressions in Lacunary Sets, Rocky Mountain J. Math. 17 (1987), 587-596 Zbl0632.10052MR908265
- T. C. Brown, A. R. Freedman, The Uniform Density of Sets of Integers and Fermat’s Last Theorem, C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1-6 Zbl0701.11011MR1043085
- N. G. de Bruijn, P. Erdős, Some linear and some quadratic recursion formulas, I. Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 (1951), 374-382 Zbl0044.06003MR47161
- R. E. Dressler, L. Pigno, Small sum sets and the Faber gap condition, Acta Sci. Math. (Szeged) 47 (1984), 233-237 Zbl0564.43006MR755578
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten., Math. Zeitschr. 17 (1923), 228-249 MR1544613
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, (1981), Princeton University Press, Princeton, N.J. Zbl0459.28023MR603625
- Z. Gáliková, B. László, T. Šalát, Remarks on uniform density of sets of integers, Acta Acad. Paed. Agriensis, Sectio Math. 23 (2002), 3-13 Zbl1012.11012MR1956574
- N. Hegyvári, Note on difference sets in , Periodica Math. Hungarica 44 (2002), 183-185 Zbl1006.11006MR1918685
- R. Jin, Nonstandard methods for upper Banach density problems, Journal of Number Theory 91 (2001), 20-38 Zbl1071.11503MR1869316
- R. Nair, On certain solutions of the diophantine equation , Acta Arithmetica 62 (1992), 61-71 Zbl0776.11006MR1179010
- G. Pólya, G. Szegö, Problems and theorems in analysis I, (1972), Springer-Verlag, Berlin Zbl0236.00003MR1492447
- P. Ribenboim, Density results on families of diophantine equations with finitely many solutions, L’Enseignement Mathématique 39 (1993), 3-23 Zbl0804.11026MR1225254
- T. Šalát, Remarks on Steinhaus Property and Ratio Sets of Positive Integers, Czech. Math. J. 50 (2000), 175-183 Zbl1034.11010MR1745470
- T. Šalát, V. Toma, Olivier’s theorem and statistical convergence, Annales Math. Blaise Pascal 10 (2003), 305-313 Zbl1061.40001MR2031274
- J. Michael Steele, Probability theory and combinatorial optimization, 69 (1997), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0916.90233MR1422018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.