A note on uniform or Banach density

Georges Grekos[1]; Vladimír Toma[2]; Jana Tomanová[3]

  • [1] Department of Mathematics Université de Saint-Etienne 23, rue du Docteur Paul Michelon F-42023 Saint-Etienne Cédex 2 France
  • [2] Department of Mathematical and Numerical Analysis Comenius University Mlynská dolina 842 48 Bratislava Slovakia
  • [3] Department of Algebra and Number Theory Comenius University Mlynská dolina 842 48 Bratislava Slovakia

Annales mathématiques Blaise Pascal (2010)

  • Volume: 17, Issue: 1, page 153-163
  • ISSN: 1259-1734

Abstract

top
In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.

How to cite

top

Grekos, Georges, Toma, Vladimír, and Tomanová, Jana. "A note on uniform or Banach density." Annales mathématiques Blaise Pascal 17.1 (2010): 153-163. <http://eudml.org/doc/116345>.

@article{Grekos2010,
abstract = {In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.},
affiliation = {Department of Mathematics Université de Saint-Etienne 23, rue du Docteur Paul Michelon F-42023 Saint-Etienne Cédex 2 France; Department of Mathematical and Numerical Analysis Comenius University Mlynská dolina 842 48 Bratislava Slovakia; Department of Algebra and Number Theory Comenius University Mlynská dolina 842 48 Bratislava Slovakia},
author = {Grekos, Georges, Toma, Vladimír, Tomanová, Jana},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Banach density; uniform density},
language = {eng},
month = {1},
number = {1},
pages = {153-163},
publisher = {Annales mathématiques Blaise Pascal},
title = {A note on uniform or Banach density},
url = {http://eudml.org/doc/116345},
volume = {17},
year = {2010},
}

TY - JOUR
AU - Grekos, Georges
AU - Toma, Vladimír
AU - Tomanová, Jana
TI - A note on uniform or Banach density
JO - Annales mathématiques Blaise Pascal
DA - 2010/1//
PB - Annales mathématiques Blaise Pascal
VL - 17
IS - 1
SP - 153
EP - 163
AB - In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.
LA - eng
KW - Banach density; uniform density
UR - http://eudml.org/doc/116345
ER -

References

top
  1. Vitaly Bergelson, Sets of recurrence of Z m -actions and properties of sets of differences in Z m , J. London Math. Soc. (2) 31 (1985), 295-304 Zbl0579.10029MR809951
  2. Vitaly Bergelson, Ergodic Ramsey theory, Contemporary Math. 65 (1987), 63-87 Zbl0642.10052MR891243
  3. Vitaly Bergelson, B. Host, B. Kra, Multiple recurrence and nilsequences. With an appendix by Imre Ruzsa, Invent. Math. 160 (2005), 261-303 Zbl1087.28007MR2138068
  4. T. C. Brown, A. R. Freedman, Arithmetic Progressions in Lacunary Sets, Rocky Mountain J. Math. 17 (1987), 587-596 Zbl0632.10052MR908265
  5. T. C. Brown, A. R. Freedman, The Uniform Density of Sets of Integers and Fermat’s Last Theorem, C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1-6 Zbl0701.11011MR1043085
  6. N. G. de Bruijn, P. Erdős, Some linear and some quadratic recursion formulas, I. Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 (1951), 374-382 Zbl0044.06003MR47161
  7. R. E. Dressler, L. Pigno, Small sum sets and the Faber gap condition, Acta Sci. Math. (Szeged) 47 (1984), 233-237 Zbl0564.43006MR755578
  8. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten., Math. Zeitschr. 17 (1923), 228-249 MR1544613
  9. H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, (1981), Princeton University Press, Princeton, N.J. Zbl0459.28023MR603625
  10. Z. Gáliková, B. László, T. Šalát, Remarks on uniform density of sets of integers, Acta Acad. Paed. Agriensis, Sectio Math. 23 (2002), 3-13 Zbl1012.11012MR1956574
  11. N. Hegyvári, Note on difference sets in n , Periodica Math. Hungarica 44 (2002), 183-185 Zbl1006.11006MR1918685
  12. R. Jin, Nonstandard methods for upper Banach density problems, Journal of Number Theory 91 (2001), 20-38 Zbl1071.11503MR1869316
  13. R. Nair, On certain solutions of the diophantine equation x - y = p ( z ) , Acta Arithmetica 62 (1992), 61-71 Zbl0776.11006MR1179010
  14. G. Pólya, G. Szegö, Problems and theorems in analysis I, (1972), Springer-Verlag, Berlin Zbl0236.00003MR1492447
  15. P. Ribenboim, Density results on families of diophantine equations with finitely many solutions, L’Enseignement Mathématique 39 (1993), 3-23 Zbl0804.11026MR1225254
  16. T. Šalát, Remarks on Steinhaus Property and Ratio Sets of Positive Integers, Czech. Math. J. 50 (2000), 175-183 Zbl1034.11010MR1745470
  17. T. Šalát, V. Toma, Olivier’s theorem and statistical convergence, Annales Math. Blaise Pascal 10 (2003), 305-313 Zbl1061.40001MR2031274
  18. J. Michael Steele, Probability theory and combinatorial optimization, 69 (1997), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0916.90233MR1422018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.