An worst case bounded special knapsack with two constraints
Ruy E. Campello; Nelson Maculan
RAIRO - Operations Research - Recherche Opérationnelle (1988)
- Volume: 22, Issue: 1, page 27-32
- ISSN: 0399-0559
Access Full Article
topHow to cite
topCampello, Ruy E., and Maculan, Nelson. "An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints." RAIRO - Operations Research - Recherche Opérationnelle 22.1 (1988): 27-32. <http://eudml.org/doc/104931>.
@article{Campello1988,
author = {Campello, Ruy E., Maculan, Nelson},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {geometric complexity type proof; knapsack problem; side constraint},
language = {eng},
number = {1},
pages = {27-32},
publisher = {EDP-Sciences},
title = {An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints},
url = {http://eudml.org/doc/104931},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Campello, Ruy E.
AU - Maculan, Nelson
TI - An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1988
PB - EDP-Sciences
VL - 22
IS - 1
SP - 27
EP - 32
LA - eng
KW - geometric complexity type proof; knapsack problem; side constraint
UR - http://eudml.org/doc/104931
ER -
References
top- 1. R. E. CAMPELLO and N. MACULAN, A Lower Bound to the Set Partitioning Problem with Side Constraints, DRC-70-20-3, Design Research Center Report Series, Carnegie-Mellon University, Pittsburg, Pennylvania, 15213, U.S.A., 1983.
- 2. K. DUDZINSKI and S. WALUKIEWICZ, Exact Methods for the Knapsack Problem and its Generalizations, European Journal of Operational Research (EJOR), Vol. 28, No. 1, 1987, pp. 3-21. Zbl0603.90097MR871368
- 3. M. E. DYER, A Geometric Approach to Two-Constraint Linear Programs with Generalized Upper Bounds, Advances in Computing Research, Vol. 1, 1983, pp. 79-90, JAI Press.
- 4. M. E. DYER, An O (n) Algorithm for the Multiple-Choice Knapsack Linear Program, Mathematical Programming, Vol. 29, No. 1, 1984, pp. 57-63. Zbl0532.90068MR740505
- 5. E. L. JOHNSON and M. G. PADBERG, A Note on the Knapsack Problem with Special Ordered Sets, Operations Research Letters, Vol 1, No. 1, 1981, pp. 18-22. Zbl0493.90062MR643055
- 6. D. E. MULLER and F. P. PREPARATA, Finding the Intersection of Two Convex Polyhedra, Theoretical Computer Sciences, Vol. 7, 1978, pp. 217-238. Zbl0396.52002MR509019
- 7. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, N.J., U.S.A., 1970. Zbl0932.90001MR274683
- 8. E. ZEMEL, The Linear Multiple Choice Knapsack Problem, Operations Research, Vol. 28, No. 6, November-December, 1980, pp. 1412-1423. Zbl0447.90064MR609968
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.