A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms

H. Idrissi; O. Lefebvre; C. Michelot

RAIRO - Operations Research - Recherche Opérationnelle (1988)

  • Volume: 22, Issue: 4, page 313-330
  • ISSN: 0399-0559

How to cite

top

Idrissi, H., Lefebvre, O., and Michelot, C.. "A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms." RAIRO - Operations Research - Recherche Opérationnelle 22.4 (1988): 313-330. <http://eudml.org/doc/104946>.

@article{Idrissi1988,
author = {Idrissi, H., Lefebvre, O., Michelot, C.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {location theory; optimality conditions; partial inverse method; primal- dual algorithm; constrained Fermat-Weber problem; mixed norms; updating rules; decomposition; parallel computations},
language = {eng},
number = {4},
pages = {313-330},
publisher = {EDP-Sciences},
title = {A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms},
url = {http://eudml.org/doc/104946},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Idrissi, H.
AU - Lefebvre, O.
AU - Michelot, C.
TI - A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1988
PB - EDP-Sciences
VL - 22
IS - 4
SP - 313
EP - 330
LA - eng
KW - location theory; optimality conditions; partial inverse method; primal- dual algorithm; constrained Fermat-Weber problem; mixed norms; updating rules; decomposition; parallel computations
UR - http://eudml.org/doc/104946
ER -

References

top
  1. 1. J. CHATELON D. HEARN and T. J. LOWE, A Subgradient Algorithm for Certain Minimax and Minisum Problems. The Constrained Case, S.I.A.M. Journal on Control and Qptimization, Vol. 20, 1982, pp. 455-469. Zbl0498.49020MR661026
  2. 2. P. HANSEN, D. PEETERS and J. F. THISSE, Constrained Location and the Weber-Rawls Problem, Annals of Discrete Mathematics, Vol. 11, 1981, pp. 147-166. Zbl0469.90027MR653823
  3. 3. P. HANSEN, D. PEETERS and J. F. THISSE, An Algorithm for Constrained Weber Problem, Management Science, Vol. 28, No. 11, 1982, pp. 1285-1295. Zbl0512.90038
  4. 4. H. JUEL and R. F. LOVE, On the Dual of the Linearly Constrained Multifacility Location Problem with Arbitrary Norms, Transportation Science, Vol. 25, 1981, pp. 329-337. MR638464
  5. 5. P. J. LAURENT, Approximation et Optimisation, Hermann, Paris, 1972. Zbl0238.90058MR467080
  6. 6. O. LEFEBVRE and C. MICHELOT, Calcul d'un point fixe d'une application prox par la méthode des approximations successives; condition de convergence finie, Comptes rendus de l'Académie des Sciences de Paris, T. 303, série I, No. 17, 1986. Zbl0607.65030MR870918
  7. 7. R. F. LOVE, Locating Facilities in Three-Dimensional Space by Convex Programming, Naval Research Logistics Quaterly, Vol. 16, 1969, pp. 503-516. Zbl0194.20805MR260430
  8. 8. R. F. LOVE, The Dual of a Hyperbolic Approximation to the Generalized Constrained Multi-Facility Location Problem with lp Distances, Management Science, Vol. 21, No. 1, 1974, pp, 22-33. Zbl0311.90062MR439161
  9. 9. R. F. LOVE and S. A. KRAEMER, A Dual Decomposition Method for Minimizing Transportation Costs in Multi-facility Location Problems, Transportation Science, Vol. 7, 1973, pp. 297-316. MR343874
  10. 10. R. F. LOVE and J. G. MORRIS, Solving Constrained Multi-facility Location Problems Involving lp Distances Using Convex Programming, Operations Research, Vol. 23, 1975, pp. 581-587. Zbl0311.90043MR444034
  11. 11. C. MICHELOT and O. LEFEBVRE, A Primal-dual Algorithm for the Fermat-Weber Problem Involving Mixed Gauges, Mathematical Programming, Vol. 39, 1987, pp. 319-335. Zbl0641.90034MR918873
  12. 12. R. MIFFLIN, A Stable Method for Solving Certain Constrained Least Squares Problems, Mathematical Programming, Vol. 16, 1974, pp. 141-158. Zbl0407.90065MR527571
  13. 13. J. G. MORRIS, A Linear Programming Solution to the Generalized Rectangular Distance Weber Problem, Naval Research Logistics Quaterly, Vol. 22, 1975, pp. 155-164. Zbl0305.90063MR384116
  14. 14. R. T. ROCKAFELLAR, Convex Analysis, Princeton, New Jersey, Princeton University Press, 1970. Zbl0932.90001
  15. 15. R. T. ROCKAFELLAR, Conjugate Duality and Optimization, Regional Conference Series in Applied Mathematics, S.I.A.M., 1974. Zbl0296.90036MR373611
  16. 16. M. K. SCHAEFER and A. P. HURTER, An Algorithm for the Solution of a Location Problem with Metric Constraints, Naval Research Logistics Quaterly, Vol. 21, 1974, pp. 625-636. Zbl0298.90063MR363488
  17. 17. J. E. SPINGARN, Partial Inverse of a Monotone Operator, Applied Mathematics and Optimization, Vol. 10, 1983, pp. 247-265. Zbl0524.90072MR722489
  18. 18. C. D. T. WATSON-GANDY, The Solution of Distance Constrained Mini-Sum Location Problems, Operations Research, Vol. 33, 1985, pp. 784-802. Zbl0569.90020MR797886
  19. 19. G. O. WESOLOWSKY and R. F. LOVE, The Optimal Location of New Facilities Using Rectangular Distances, Operations Research, Vol. 19, 1971, pp. 124-130. Zbl0216.54102MR384089

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.