A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms
H. Idrissi; O. Lefebvre; C. Michelot
RAIRO - Operations Research - Recherche Opérationnelle (1988)
- Volume: 22, Issue: 4, page 313-330
- ISSN: 0399-0559
Access Full Article
topHow to cite
topIdrissi, H., Lefebvre, O., and Michelot, C.. "A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms." RAIRO - Operations Research - Recherche Opérationnelle 22.4 (1988): 313-330. <http://eudml.org/doc/104946>.
@article{Idrissi1988,
author = {Idrissi, H., Lefebvre, O., Michelot, C.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {location theory; optimality conditions; partial inverse method; primal- dual algorithm; constrained Fermat-Weber problem; mixed norms; updating rules; decomposition; parallel computations},
language = {eng},
number = {4},
pages = {313-330},
publisher = {EDP-Sciences},
title = {A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms},
url = {http://eudml.org/doc/104946},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Idrissi, H.
AU - Lefebvre, O.
AU - Michelot, C.
TI - A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed norms
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1988
PB - EDP-Sciences
VL - 22
IS - 4
SP - 313
EP - 330
LA - eng
KW - location theory; optimality conditions; partial inverse method; primal- dual algorithm; constrained Fermat-Weber problem; mixed norms; updating rules; decomposition; parallel computations
UR - http://eudml.org/doc/104946
ER -
References
top- 1. J. CHATELON D. HEARN and T. J. LOWE, A Subgradient Algorithm for Certain Minimax and Minisum Problems. The Constrained Case, S.I.A.M. Journal on Control and Qptimization, Vol. 20, 1982, pp. 455-469. Zbl0498.49020MR661026
- 2. P. HANSEN, D. PEETERS and J. F. THISSE, Constrained Location and the Weber-Rawls Problem, Annals of Discrete Mathematics, Vol. 11, 1981, pp. 147-166. Zbl0469.90027MR653823
- 3. P. HANSEN, D. PEETERS and J. F. THISSE, An Algorithm for Constrained Weber Problem, Management Science, Vol. 28, No. 11, 1982, pp. 1285-1295. Zbl0512.90038
- 4. H. JUEL and R. F. LOVE, On the Dual of the Linearly Constrained Multifacility Location Problem with Arbitrary Norms, Transportation Science, Vol. 25, 1981, pp. 329-337. MR638464
- 5. P. J. LAURENT, Approximation et Optimisation, Hermann, Paris, 1972. Zbl0238.90058MR467080
- 6. O. LEFEBVRE and C. MICHELOT, Calcul d'un point fixe d'une application prox par la méthode des approximations successives; condition de convergence finie, Comptes rendus de l'Académie des Sciences de Paris, T. 303, série I, No. 17, 1986. Zbl0607.65030MR870918
- 7. R. F. LOVE, Locating Facilities in Three-Dimensional Space by Convex Programming, Naval Research Logistics Quaterly, Vol. 16, 1969, pp. 503-516. Zbl0194.20805MR260430
- 8. R. F. LOVE, The Dual of a Hyperbolic Approximation to the Generalized Constrained Multi-Facility Location Problem with lp Distances, Management Science, Vol. 21, No. 1, 1974, pp, 22-33. Zbl0311.90062MR439161
- 9. R. F. LOVE and S. A. KRAEMER, A Dual Decomposition Method for Minimizing Transportation Costs in Multi-facility Location Problems, Transportation Science, Vol. 7, 1973, pp. 297-316. MR343874
- 10. R. F. LOVE and J. G. MORRIS, Solving Constrained Multi-facility Location Problems Involving lp Distances Using Convex Programming, Operations Research, Vol. 23, 1975, pp. 581-587. Zbl0311.90043MR444034
- 11. C. MICHELOT and O. LEFEBVRE, A Primal-dual Algorithm for the Fermat-Weber Problem Involving Mixed Gauges, Mathematical Programming, Vol. 39, 1987, pp. 319-335. Zbl0641.90034MR918873
- 12. R. MIFFLIN, A Stable Method for Solving Certain Constrained Least Squares Problems, Mathematical Programming, Vol. 16, 1974, pp. 141-158. Zbl0407.90065MR527571
- 13. J. G. MORRIS, A Linear Programming Solution to the Generalized Rectangular Distance Weber Problem, Naval Research Logistics Quaterly, Vol. 22, 1975, pp. 155-164. Zbl0305.90063MR384116
- 14. R. T. ROCKAFELLAR, Convex Analysis, Princeton, New Jersey, Princeton University Press, 1970. Zbl0932.90001
- 15. R. T. ROCKAFELLAR, Conjugate Duality and Optimization, Regional Conference Series in Applied Mathematics, S.I.A.M., 1974. Zbl0296.90036MR373611
- 16. M. K. SCHAEFER and A. P. HURTER, An Algorithm for the Solution of a Location Problem with Metric Constraints, Naval Research Logistics Quaterly, Vol. 21, 1974, pp. 625-636. Zbl0298.90063MR363488
- 17. J. E. SPINGARN, Partial Inverse of a Monotone Operator, Applied Mathematics and Optimization, Vol. 10, 1983, pp. 247-265. Zbl0524.90072MR722489
- 18. C. D. T. WATSON-GANDY, The Solution of Distance Constrained Mini-Sum Location Problems, Operations Research, Vol. 33, 1985, pp. 784-802. Zbl0569.90020MR797886
- 19. G. O. WESOLOWSKY and R. F. LOVE, The Optimal Location of New Facilities Using Rectangular Distances, Operations Research, Vol. 19, 1971, pp. 124-130. Zbl0216.54102MR384089
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.