Weak convergence to fractional Brownian motion in some anisotropic Besov space
- [1] Cadi Ayyad University Faculty of Sciences Semlalia Departement of Mathematics B.P. 2390 Marrakech 40000 MOROCCO
Annales mathématiques Blaise Pascal (2004)
- Volume: 11, Issue: 1, page 1-17
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAit Ouahra, M.. "Weak convergence to fractional Brownian motion in some anisotropic Besov space." Annales mathématiques Blaise Pascal 11.1 (2004): 1-17. <http://eudml.org/doc/10496>.
@article{AitOuahra2004,
abstract = {We give some limit theorems for the occupation times of 1-dimensional Brownian motion in some anisotropic Besov space. Our results generalize those obtained by Csaki et al. [4] in continuous functions space.},
affiliation = {Cadi Ayyad University Faculty of Sciences Semlalia Departement of Mathematics B.P. 2390 Marrakech 40000 MOROCCO},
author = {Ait Ouahra, M.},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
month = {1},
number = {1},
pages = {1-17},
publisher = {Annales mathématiques Blaise Pascal},
title = {Weak convergence to fractional Brownian motion in some anisotropic Besov space},
url = {http://eudml.org/doc/10496},
volume = {11},
year = {2004},
}
TY - JOUR
AU - Ait Ouahra, M.
TI - Weak convergence to fractional Brownian motion in some anisotropic Besov space
JO - Annales mathématiques Blaise Pascal
DA - 2004/1//
PB - Annales mathématiques Blaise Pascal
VL - 11
IS - 1
SP - 1
EP - 17
AB - We give some limit theorems for the occupation times of 1-dimensional Brownian motion in some anisotropic Besov space. Our results generalize those obtained by Csaki et al. [4] in continuous functions space.
LA - eng
UR - http://eudml.org/doc/10496
ER -
References
top- J. Bergh, J. Löfström, Interpolation spaces. An introduction, (1976), Springer-Verlag Zbl0344.46071MR482275
- P. Billingsley, Convergence of Probability measures, (1968), Wiley, New York Zbl0172.21201MR233396
- Z. Ciesielski, G. Keryacharian, B. Roynette, Quelques espaces fonctionels associes à des processus Gaussiens, Studia Math 107 (1993), 171-204 Zbl0809.60004MR1244574
- E. Csaki, Z. Shi, M. Yor, Fractional Brownian motions as ”higher-order” fractional derivatives of Brownian local times Zbl1030.60073MR1979974
- J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, 288 (1987), Springer, Berlin Zbl0635.60021MR959133
- A. Kamont, Isomorphism of some anisotropic Besov and sequence spaces, Studia. Math 110 (1994), 169-189 Zbl0810.41010MR1279990
- A. Kamont, On the fractional anisotropic Wiener field, Prob. and Math. Statistics 16 (1996), 85-98 Zbl0857.60046MR1407935
- A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives. Theory and applications, (1993), Gordon and Breach Science Publishers Zbl0818.26003MR1347689
- J. Lamperti, On convergence of stochastic processes, Trans. Amer. Math. Soc 104 (1962), 430-435 Zbl0113.33502MR143245
- M. B. Marcus, J. Rosen, –variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Prob 20 (1992), 1685-1713 Zbl0762.60069MR1188038
- H. P. McKean, A Hölder condition for Brownian local time, J. Math. Kyoto Univ 1 (1962), 195-201 Zbl0121.13101MR146902
- J. Peetre, New thoughts on Besov spaces, (1976), Duke Univ. Math. Series, Durham, NC Zbl0356.46038MR461123
- E. C. Titchmarsh, Introduction to the theory of Fourier integrals, (1948), Second edition. Clarendon Press, Oxford Zbl0017.40404
- H. R. Trotter, A property of Brownian motion paths, Illinois. J. Math 2 (1958), 425-433 Zbl0117.35502MR96311
- T. Yamada, On the fractional derivative of Brownian local times, J. Math. Kyoto Univ 25 (1985), 49-58 Zbl0625.60090MR777245
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.