Isomorphism of some anisotropic Besov and sequence spaces
Studia Mathematica (1994)
- Volume: 110, Issue: 2, page 169-189
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Z. Ciesielski, Properties of the orthonormal Franklin system II, Studia Math. 27 (1966), 289-323. Zbl0148.04702
- [2] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302. Zbl0273.41010
- [3] Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in and , ibid. 41 (1972), 211-224. Zbl0235.46047
- [4] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact manifolds, Part I, ibid. 76 (1983), 1-58. Zbl0599.46041
- [5] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact manifolds, Part II, ibid., 95-136. Zbl0599.46042
- [6] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, ibid. 107 (1993), 171-204.
- [7] A. Kamont, A note on the isomorphism of some anisotropic Besov-type function and sequence spaces, in: Proc. Conf. "Open Problems in Approximation Theory", Voneshta Voda, June 18-24, 1993, to appear.
- [8] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. Zbl0328.41008