Isomorphism of some anisotropic Besov and sequence spaces

A. Kamont

Studia Mathematica (1994)

  • Volume: 110, Issue: 2, page 169-189
  • ISSN: 0039-3223

Abstract

top
An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.

How to cite

top

Kamont, A.. "Isomorphism of some anisotropic Besov and sequence spaces." Studia Mathematica 110.2 (1994): 169-189. <http://eudml.org/doc/216107>.

@article{Kamont1994,
abstract = {An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.},
author = {Kamont, A.},
journal = {Studia Mathematica},
keywords = {Besov spaces; Stieltjes-type integral operator},
language = {eng},
number = {2},
pages = {169-189},
title = {Isomorphism of some anisotropic Besov and sequence spaces},
url = {http://eudml.org/doc/216107},
volume = {110},
year = {1994},
}

TY - JOUR
AU - Kamont, A.
TI - Isomorphism of some anisotropic Besov and sequence spaces
JO - Studia Mathematica
PY - 1994
VL - 110
IS - 2
SP - 169
EP - 189
AB - An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.
LA - eng
KW - Besov spaces; Stieltjes-type integral operator
UR - http://eudml.org/doc/216107
ER -

References

top
  1. [1] Z. Ciesielski, Properties of the orthonormal Franklin system II, Studia Math. 27 (1966), 289-323. Zbl0148.04702
  2. [2] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302. Zbl0273.41010
  3. [3] Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in C m ( I d ) and W p m ( I d ) , ibid. 41 (1972), 211-224. Zbl0235.46047
  4. [4] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact C manifolds, Part I, ibid. 76 (1983), 1-58. Zbl0599.46041
  5. [5] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact C manifolds, Part II, ibid., 95-136. Zbl0599.46042
  6. [6] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, ibid. 107 (1993), 171-204. 
  7. [7] A. Kamont, A note on the isomorphism of some anisotropic Besov-type function and sequence spaces, in: Proc. Conf. "Open Problems in Approximation Theory", Voneshta Voda, June 18-24, 1993, to appear. 
  8. [8] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. Zbl0328.41008

NotesEmbed ?

top

You must be logged in to post comments.