# Isomorphism of some anisotropic Besov and sequence spaces

Studia Mathematica (1994)

- Volume: 110, Issue: 2, page 169-189
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKamont, A.. "Isomorphism of some anisotropic Besov and sequence spaces." Studia Mathematica 110.2 (1994): 169-189. <http://eudml.org/doc/216107>.

@article{Kamont1994,

abstract = {An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.},

author = {Kamont, A.},

journal = {Studia Mathematica},

keywords = {Besov spaces; Stieltjes-type integral operator},

language = {eng},

number = {2},

pages = {169-189},

title = {Isomorphism of some anisotropic Besov and sequence spaces},

url = {http://eudml.org/doc/216107},

volume = {110},

year = {1994},

}

TY - JOUR

AU - Kamont, A.

TI - Isomorphism of some anisotropic Besov and sequence spaces

JO - Studia Mathematica

PY - 1994

VL - 110

IS - 2

SP - 169

EP - 189

AB - An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.

LA - eng

KW - Besov spaces; Stieltjes-type integral operator

UR - http://eudml.org/doc/216107

ER -

## References

top- [1] Z. Ciesielski, Properties of the orthonormal Franklin system II, Studia Math. 27 (1966), 289-323. Zbl0148.04702
- [2] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302. Zbl0273.41010
- [3] Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in ${C}^{m}\left({I}^{d}\right)$ and ${W}_{p}^{m}\left({I}^{d}\right)$, ibid. 41 (1972), 211-224. Zbl0235.46047
- [4] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact ${C}^{\infty}$ manifolds, Part I, ibid. 76 (1983), 1-58. Zbl0599.46041
- [5] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact ${C}^{\infty}$ manifolds, Part II, ibid., 95-136. Zbl0599.46042
- [6] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, ibid. 107 (1993), 171-204.
- [7] A. Kamont, A note on the isomorphism of some anisotropic Besov-type function and sequence spaces, in: Proc. Conf. "Open Problems in Approximation Theory", Voneshta Voda, June 18-24, 1993, to appear.
- [8] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. Zbl0328.41008

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.