On the numerical solution of bound constrained optimization problems
Ana Friedlander; José Mario Martínez
RAIRO - Operations Research - Recherche Opérationnelle (1989)
- Volume: 23, Issue: 4, page 319-341
- ISSN: 0399-0559
Access Full Article
topHow to cite
topFriedlander, Ana, and Martínez, José Mario. "On the numerical solution of bound constrained optimization problems." RAIRO - Operations Research - Recherche Opérationnelle 23.4 (1989): 319-341. <http://eudml.org/doc/104967>.
@article{Friedlander1989,
author = {Friedlander, Ana, Martínez, José Mario},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {differentiable concave function; active set strategies; global convergence},
language = {eng},
number = {4},
pages = {319-341},
publisher = {EDP-Sciences},
title = {On the numerical solution of bound constrained optimization problems},
url = {http://eudml.org/doc/104967},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Friedlander, Ana
AU - Martínez, José Mario
TI - On the numerical solution of bound constrained optimization problems
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1989
PB - EDP-Sciences
VL - 23
IS - 4
SP - 319
EP - 341
LA - eng
KW - differentiable concave function; active set strategies; global convergence
UR - http://eudml.org/doc/104967
ER -
References
top- 1. D. P. BERTSEKAS, Projected Newton Methods for Optimization problems with simple constraints, SIAM J. Control Optim., Vol. 20, 1982, pp. 221-246. Zbl0507.49018MR646950
- 2. M. J. BEST and K. RITTER, An Effective Algorithm for Quadratic Minimization Problems, MRC Tech. Rep. 1691, Mathematîcs Research Center, University of Wisconsin-Madison, 1976.
- 3. A. BJORCK, A Direct Method for Sparse Least-Squares Problems with Lower and Upper Bounds, Department of Mathematics, Linkoping University, Linkoping, Sweden, 1987. Zbl0659.65039
- 4. P. H. CALAMAI and J. J. MORÉ, Projected Gradient Methods for Linearly Constrained Problems, Mathematical Programming, Vol. 39, 1987, pp. 93-116. Zbl0634.90064MR909010
- 5. J. CEA and R. GLOWINSKI, Sur des méthodes d'optimisation par relaxation, RAIRO R-3, 1953, pp. 5-32. Zbl0279.90033
- 6. A. K. CLINE, C. B. MOLER, G. W. STEWART and J. H. WILKINSON, An Estimate of the Condition Number of a Matrix, SIAM J. Numer. Anal., Vol. 16, 1979, pp. 368-375. Zbl0403.65012MR526498
- 7. R. S. DEMBO and U. TULOWITZKI, On the Minimization of Quadratic Functions Subject to Box Constraints, Working paper series B 71, School of Organization and Management, Yale University, New Haven, 1987.
- 8. J. E. DENNIS and R. S. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ, 1983. Zbl0579.65058MR702023
- 9. R. FLETCHER and C. M. REEVES, Function Minimization by Conjugate Gradients, Computer J., Vol. 2, 1964, pp. 149-153. Zbl0132.11701MR187375
- 10. P. E. GILL and W. MURRAY, Minimization Subject to Bounds on the Variables, NPL report NAC 72, National Physical Laboratory, Teddington, 1976.
- 11. P. E. GILL and W. MURRAY, Numerically Stable Methods for Quadratic Programming, Mathematical Programming, Vol. 14, 1978, pp. 349-372. Zbl0374.90054MR484411
- 12. P. E. GILL, W. MURRAY, M. A. SAUNDERS and M. WRIGHT, A Note on Nonlinear Approaches to Linear Programmong, TR SOL 86-7, Systems Optimization Labotory, Stanford University, Stanford, 1986.
- 13. P. E. GILL, W. MURRAY and M. WRIGHT, Practical Optimization, Academic Press, London-New York, 1981. Zbl0503.90062MR634376
- 14. G. H. GOLUB and C. F. VAN LOAN, Matrix Computations, The John Hopkins University Press, Baltimore, 1983. Zbl0733.65016MR733103
- 15. G. T. HERMAN, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, New York, 1980. Zbl0538.92005MR630896
- 16. N. KARMARKAR, A New Polynomial-Time Algorithm for Linear Programming, Combinatorica, Vol. 4, 1984, pp. 373-395. Zbl0557.90065MR779900
- 17. P. LÖTSTEDT, Solving the Minimal Least Squares Problem Subject to Bounds on the Variables, BIT, Vol. 24, 1984, pp. 206-224 Zbl0546.65041MR753549
- 18. J. J. MORÉ, Numerical Solution of Bound Constrained Problems, ANL/MCS-TM-96, Math. and Comp. Sci. Div., Argonne National Laboratory, Argonne, Illinois, 1987. Zbl0655.65086MR951428
- 19. D. P. O'LEARY, A Generalized Conjugate Gradient Algorithm for Solving a Class of Quadratic Programming Problems, Linear Algebra and its Applications, Vol.34, 1980, pp. 371-399. Zbl0464.65039MR591439
- 20. M. J. D. POWELL, Subroutine GSRCH, Harwell Subroutine Library, Harwell, Oxfordshire, 1980.
- 21. B. T. POLYAK, The Conjugate Gradient Method in Extremal Problems, USSR Computational Mathematics and Mathematical Physics, Vol. 9, 1969, pp. 94-112. Zbl0229.49023
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.