New algorithms for maximization of concave functions with box constraints
A. Friedlander; J. M. Martinez
RAIRO - Operations Research - Recherche Opérationnelle (1992)
- Volume: 26, Issue: 3, page 209-236
- ISSN: 0399-0559
Access Full Article
topHow to cite
topFriedlander, A., and Martinez, J. M.. "New algorithms for maximization of concave functions with box constraints." RAIRO - Operations Research - Recherche Opérationnelle 26.3 (1992): 209-236. <http://eudml.org/doc/105038>.
@article{Friedlander1992,
author = {Friedlander, A., Martinez, J. M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {box constraints; differentiable concave function; active set strategies; gradient projection method},
language = {eng},
number = {3},
pages = {209-236},
publisher = {EDP-Sciences},
title = {New algorithms for maximization of concave functions with box constraints},
url = {http://eudml.org/doc/105038},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Friedlander, A.
AU - Martinez, J. M.
TI - New algorithms for maximization of concave functions with box constraints
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 3
SP - 209
EP - 236
LA - eng
KW - box constraints; differentiable concave function; active set strategies; gradient projection method
UR - http://eudml.org/doc/105038
ER -
References
top- 1. D. P. BERTSEKAS, Projected Newton Methods for Optimization Problems with Simple Constraints, S.I.A.M. J. Control Optim., 1982, 20, pp. 221-246. Zbl0507.49018MR646950
- 2. M. J. BEST and K. RITTER, An Effective Algorithm for Quadratic Minimization Problems, M.R.C. Tech Rep 1691, Mathematics Research Center, University of Wisconsin-Madison, 1976.
- 3. A. BJORCK, A Direct Method for Sparse Least-Squares Problems with Lower and Upper Bounds, Departament of Mathematics, Linköping University, Linköping, Sweden, 1987. Zbl0659.65039
- 4. P. H. CALAMAI, and J. J. MORÉ, Projected Gradient Methods for Linearly Constrained Problems, Math. Programming, 1987, 39, pp. 93-116. Zbl0634.90064MR909010
- 5. J. CEA and R. GLOWINSKI, Sur des Méthodes d'optimisation par relaxation, R.A.I.R.O., 1983, R-3, pp. 5-32. Zbl0279.90033
- 6. R. S. DEMBO and U. TULOWITZKI, On the Minimization of Quadratic Functions Subject to Box Constraints, Working Paper Series B71, School of Organization and Management, Yale University, New Haven, 1987.
- 7. J. E. DENNIS and R. S. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ, 1983. Zbl0579.65058MR702023
- 8. R. FLETCHER, Practical Methods of Optimization, 2nd Edition, Wiley, 1987. Zbl0474.65043MR955799
- 9. A. FRIEDLANDER, C. LYRA, H. TAVARES and E. L. MEDINA, Optimizaton with S tair-Case Structure: an Application to Generation Scheduling, Comput. Oper. Res., 1990, 17, pp. 143-152. Zbl0687.90089MR1035839
- 10. A. FRIEDLANDER and J. M. MARTINEZ, On the Numerical Solution of Bound Constrained Optimization Problems, R.A.I.R.O. Oper. Res., 1989, 23, pp. 319-341. Zbl0683.90073MR1036699
- 11. P. E. GILL and W. MURRAY, Minimization Subject to Bounds on the Variables, N.P.L. report NAC 72, National Physical Laboratory, Teddington, 1976.
- 12. P. E. GILL and W. MURRAY, Numerically Stable Methods for Quadratic Programming, Math. Programming, 1978, 14, pp. 349-372. Zbl0374.90054MR484411
- 13. P. E. GILL, W. MURRAY and M. WRIGHT, Practical Optimization, Academic Press, London, New York, 1981. Zbl0503.90062MR634376
- 14. R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. Zbl1139.65050MR737005
- 15. A. A. GOLDSTEIN, Convex Programming in Hubert Space, Bull. Amer. Math. Soc., 1964, 70, pp. 709-710. Zbl0142.17101MR165982
- 16. H. S. GOMES and J. M. MARTÍNEZ, A Numerically Stable Reduced-Gradient Type Algorithm for Solving Large-Scale Linearly Constrained Minimization Problems, Comput. Oper. Res., 1991, 18, pp. 17-31. Zbl0717.90069MR1077662
- 17. G. H. GOLUB and C. F. VAN LOAN, Matrix Computations, The Johns Hopkins, University Press, Baltimore, 1983. Zbl0733.65016MR733103
- 18. G. T. HERMAN, Image Reconstruction from Projections: The Fundamental of Computerized Tomography, Academic Press, New York, 1980. Zbl0538.92005MR630896
- 19. E. S. LEVITIN and B. T. POLYAK, Constrained Minimization Problems, U.S.S.R. Comput. Math.-Math. Phys., 1966, 6, pp. 1-50.
- 20. P. LÓTSTEDT, Solving the Minimal Least Squares Problems Subject to Bounds on the Variables, B.I.T., 1984, 24, pp. 206-224. Zbl0546.65041MR753549
- 21. C. LYRA, A. FRIEDLANDER and J. C. GEROMEL, Coordenação da operação energética no médio São Francisco por um método de gradiente reduzido, Mat. Apl. Comput., 1982, 1, pp. 107-120.
- 22. J. J. MORÉ, Numerical solution of bound constrained problems, A.N.L./M.C.S.-TM-96, Math. and Comp. Sci. Div., Argonne National Laboratory, Argonne, Illinois, 1987. Zbl0655.65086MR951428
- 23. J. J. MORÉ and G. TORALDO, Algorithms for Bound Constrained Quadratic Programming Problems, Numer. Math., 1989, 55, pp. 377-400. Zbl0675.65061MR997229
- 24. J. J. MORÉ and G. TORALDO, On the solution of Large Quadratic Programming Problems with Bound Constraints, S.I.A.M. J. Optim., 1991, 7, pp.93-113. Zbl0752.90053MR1094793
- 25. B. A. MURTAGH and M. A. SAUNDERS, Large-Scale Linearly Constrained Optimization, Math. Programming, 1978, 14, pp. 41-72. Zbl0383.90074MR462607
- 26. R. H. NICKEL and J. W. TOLLE, A Sparse Sequential Quadratic Programming Algorithm, J.O.T.A., 1989, 60, pp. 453-473. Zbl0632.90053MR993010
- 27. D. P. O'LEARY, A Generalized Conjugate Gradient Algorithm for Solving a Class of Quadratic Programming Problems, Linear Algebra Appl., 1980, 34, pp. 371-399. Zbl0464.65039MR591439
- 28. B. T. POLYAK, The Conjugate Gradient Method in Extremal Problems, U.S.S.R.Comput. Math. and Math. Phys., 1969, 9, pp. 94-112 Zbl0229.49023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.