New algorithms for maximization of concave functions with box constraints

A. Friedlander; J. M. Martinez

RAIRO - Operations Research - Recherche Opérationnelle (1992)

  • Volume: 26, Issue: 3, page 209-236
  • ISSN: 0399-0559

How to cite


Friedlander, A., and Martinez, J. M.. "New algorithms for maximization of concave functions with box constraints." RAIRO - Operations Research - Recherche Opérationnelle 26.3 (1992): 209-236. <>.

author = {Friedlander, A., Martinez, J. M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {box constraints; differentiable concave function; active set strategies; gradient projection method},
language = {eng},
number = {3},
pages = {209-236},
publisher = {EDP-Sciences},
title = {New algorithms for maximization of concave functions with box constraints},
url = {},
volume = {26},
year = {1992},

AU - Friedlander, A.
AU - Martinez, J. M.
TI - New algorithms for maximization of concave functions with box constraints
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 3
SP - 209
EP - 236
LA - eng
KW - box constraints; differentiable concave function; active set strategies; gradient projection method
UR -
ER -


  1. 1. D. P. BERTSEKAS, Projected Newton Methods for Optimization Problems with Simple Constraints, S.I.A.M. J. Control Optim., 1982, 20, pp. 221-246. Zbl0507.49018MR646950
  2. 2. M. J. BEST and K. RITTER, An Effective Algorithm for Quadratic Minimization Problems, M.R.C. Tech Rep 1691, Mathematics Research Center, University of Wisconsin-Madison, 1976. 
  3. 3. A. BJORCK, A Direct Method for Sparse Least-Squares Problems with Lower and Upper Bounds, Departament of Mathematics, Linköping University, Linköping, Sweden, 1987. Zbl0659.65039
  4. 4. P. H. CALAMAI, and J. J. MORÉ, Projected Gradient Methods for Linearly Constrained Problems, Math. Programming, 1987, 39, pp. 93-116. Zbl0634.90064MR909010
  5. 5. J. CEA and R. GLOWINSKI, Sur des Méthodes d'optimisation par relaxation, R.A.I.R.O., 1983, R-3, pp. 5-32. Zbl0279.90033
  6. 6. R. S. DEMBO and U. TULOWITZKI, On the Minimization of Quadratic Functions Subject to Box Constraints, Working Paper Series B71, School of Organization and Management, Yale University, New Haven, 1987. 
  7. 7. J. E. DENNIS and R. S. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ, 1983. Zbl0579.65058MR702023
  8. 8. R. FLETCHER, Practical Methods of Optimization, 2nd Edition, Wiley, 1987. Zbl0474.65043MR955799
  9. 9. A. FRIEDLANDER, C. LYRA, H. TAVARES and E. L. MEDINA, Optimizaton with S tair-Case Structure: an Application to Generation Scheduling, Comput. Oper. Res., 1990, 17, pp. 143-152. Zbl0687.90089MR1035839
  10. 10. A. FRIEDLANDER and J. M. MARTINEZ, On the Numerical Solution of Bound Constrained Optimization Problems, R.A.I.R.O. Oper. Res., 1989, 23, pp. 319-341. Zbl0683.90073MR1036699
  11. 11. P. E. GILL and W. MURRAY, Minimization Subject to Bounds on the Variables, N.P.L. report NAC 72, National Physical Laboratory, Teddington, 1976. 
  12. 12. P. E. GILL and W. MURRAY, Numerically Stable Methods for Quadratic Programming, Math. Programming, 1978, 14, pp. 349-372. Zbl0374.90054MR484411
  13. 13. P. E. GILL, W. MURRAY and M. WRIGHT, Practical Optimization, Academic Press, London, New York, 1981. Zbl0503.90062MR634376
  14. 14. R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. Zbl1139.65050MR737005
  15. 15. A. A. GOLDSTEIN, Convex Programming in Hubert Space, Bull. Amer. Math. Soc., 1964, 70, pp. 709-710. Zbl0142.17101MR165982
  16. 16. H. S. GOMES and J. M. MARTÍNEZ, A Numerically Stable Reduced-Gradient Type Algorithm for Solving Large-Scale Linearly Constrained Minimization Problems, Comput. Oper. Res., 1991, 18, pp. 17-31. Zbl0717.90069MR1077662
  17. 17. G. H. GOLUB and C. F. VAN LOAN, Matrix Computations, The Johns Hopkins, University Press, Baltimore, 1983. Zbl0733.65016MR733103
  18. 18. G. T. HERMAN, Image Reconstruction from Projections: The Fundamental of Computerized Tomography, Academic Press, New York, 1980. Zbl0538.92005MR630896
  19. 19. E. S. LEVITIN and B. T. POLYAK, Constrained Minimization Problems, U.S.S.R. Comput. Math.-Math. Phys., 1966, 6, pp. 1-50. 
  20. 20. P. LÓTSTEDT, Solving the Minimal Least Squares Problems Subject to Bounds on the Variables, B.I.T., 1984, 24, pp. 206-224. Zbl0546.65041MR753549
  21. 21. C. LYRA, A. FRIEDLANDER and J. C. GEROMEL, Coordenação da operação energética no médio São Francisco por um método de gradiente reduzido, Mat. Apl. Comput., 1982, 1, pp. 107-120. 
  22. 22. J. J. MORÉ, Numerical solution of bound constrained problems, A.N.L./M.C.S.-TM-96, Math. and Comp. Sci. Div., Argonne National Laboratory, Argonne, Illinois, 1987. Zbl0655.65086MR951428
  23. 23. J. J. MORÉ and G. TORALDO, Algorithms for Bound Constrained Quadratic Programming Problems, Numer. Math., 1989, 55, pp. 377-400. Zbl0675.65061MR997229
  24. 24. J. J. MORÉ and G. TORALDO, On the solution of Large Quadratic Programming Problems with Bound Constraints, S.I.A.M. J. Optim., 1991, 7, pp.93-113. Zbl0752.90053MR1094793
  25. 25. B. A. MURTAGH and M. A. SAUNDERS, Large-Scale Linearly Constrained Optimization, Math. Programming, 1978, 14, pp. 41-72. Zbl0383.90074MR462607
  26. 26. R. H. NICKEL and J. W. TOLLE, A Sparse Sequential Quadratic Programming Algorithm, J.O.T.A., 1989, 60, pp. 453-473. Zbl0632.90053MR993010
  27. 27. D. P. O'LEARY, A Generalized Conjugate Gradient Algorithm for Solving a Class of Quadratic Programming Problems, Linear Algebra Appl., 1980, 34, pp. 371-399. Zbl0464.65039MR591439
  28. 28. B. T. POLYAK, The Conjugate Gradient Method in Extremal Problems, U.S.S.R.Comput. Math. and Math. Phys., 1969, 9, pp. 94-112 Zbl0229.49023

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.