Un calcul numérique des différentes solutions d'un système d'équations non-linéaires

Bui Doan Khanh

RAIRO - Operations Research - Recherche Opérationnelle (1990)

  • Volume: 24, Issue: 2, page 159-166
  • ISSN: 0399-0559

How to cite

top

Khanh, Bui Doan. "Un calcul numérique des différentes solutions d'un système d'équations non-linéaires." RAIRO - Operations Research - Recherche Opérationnelle 24.2 (1990): 159-166. <http://eudml.org/doc/104978>.

@article{Khanh1990,
author = {Khanh, Bui Doan},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {multiple solutions; system of nonlinear equations; homotopy method; Hermite predictor-corrector; Newton iteration; numerical examples},
language = {fre},
number = {2},
pages = {159-166},
publisher = {EDP-Sciences},
title = {Un calcul numérique des différentes solutions d'un système d'équations non-linéaires},
url = {http://eudml.org/doc/104978},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Khanh, Bui Doan
TI - Un calcul numérique des différentes solutions d'un système d'équations non-linéaires
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1990
PB - EDP-Sciences
VL - 24
IS - 2
SP - 159
EP - 166
LA - fre
KW - multiple solutions; system of nonlinear equations; homotopy method; Hermite predictor-corrector; Newton iteration; numerical examples
UR - http://eudml.org/doc/104978
ER -

References

top
  1. 1. J. ABADIE, Generalized Reduced Gradient and Global Newton Methods, in Optimization and Related Fields, Lect. Notes in Math., n° 1190, 1986, p. 1-20. Zbl0599.90102MR858344
  2. 2. F. H. BRANIN, Widely Convergent Method for Finding Multiple Solutions of Simultaneous Nonlinear Equations, I.B.M. J. Res. Dev., 16, 1972, p. 504-522. Zbl0271.65034MR418449
  3. 3. BUI DOAN Khanh et DANG VU Huyen, Résolution numérique des équations différentielles par la formule de correction d'Hermite, C.R. Acad. Sci. Paris, 305, série I, 1987, p. 485-487. Zbl0624.65067MR916316
  4. 4. L. CESARI, Optimization, Theory and Applications, Springer-Verlag, Heidelberg, 1983. Zbl0506.49001MR688142
  5. 5. B. C. EAVES, F. J. GOULD, H. O. PEITGEN et M. J. TODD (éd.), Homotopy Methods and Global Convergence, Plenum Press, New York, 1983. Zbl0507.00009MR749963
  6. 6. C. B. GARCIA et W. I. ZANGWILL, Pathways to Solutions, Fixed Pointsand Equilïbria Prentice-Hall, New York, 1981. Zbl0512.90070
  7. 7. C. HERMITE, Sur la formule d'interpolation de Lagrange, J. fur Reine u. Angew. Math., 94, 1878, p. 70-79. JFM09.0312.02
  8. 8. F. R. LOSCALZO, On the Use of Spline Functions for the Numerical Solution of Ordinary Differential Equations, MRC Tech. Sum. Report, n° 869, Madison, 1968. MR2617606
  9. 9. L. B. RALL, Davidenko's Method for the Solution of Non-Linear Operator Equations, MRC Tech. Sum Report, n° 948, Madison, 1968. 
  10. 10. S. M. ROBINSON (éd.), Analysis and Computation of Fixed Points, Acad. Press, 1980. Zbl0463.00022MR592626
  11. 11. I. J. SCHOENBERG, Spline Functions and Differential Equations, First-Order Equations, Studies in numerical analysis (éd. SCAIFE), Acad. Press, 1974, p. 311-324. Zbl0314.65033MR377360

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.