An introduction to gerbes on orbifolds
Ernesto Lupercio[1]; Bernardo Uribe[2]
- [1] CINVESTAV Departamento de Matemáticas Apartado Postal 14-740 07000 México D. F. México
- [2] University of MIchigan Department of Mathematics East Hall Ann Arbor, MI 48109 USA
Annales mathématiques Blaise Pascal (2004)
- Volume: 11, Issue: 2, page 155-180
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topLupercio, Ernesto, and Uribe, Bernardo. "An introduction to gerbes on orbifolds." Annales mathématiques Blaise Pascal 11.2 (2004): 155-180. <http://eudml.org/doc/10503>.
@article{Lupercio2004,
abstract = {This paper is a gentle introduction to some recent results involving the theory of gerbes over orbifolds for topologists, geometers and physicists. We introduce gerbes on manifolds, orbifolds, the Dixmier-Douady class, Beilinson-Deligne orbifold cohomology, Cheeger-Simons orbifold cohomology and string connections.},
affiliation = {CINVESTAV Departamento de Matemáticas Apartado Postal 14-740 07000 México D. F. México; University of MIchigan Department of Mathematics East Hall Ann Arbor, MI 48109 USA},
author = {Lupercio, Ernesto, Uribe, Bernardo},
journal = {Annales mathématiques Blaise Pascal},
keywords = {gerbes; orbifolds},
language = {eng},
month = {7},
number = {2},
pages = {155-180},
publisher = {Annales mathématiques Blaise Pascal},
title = {An introduction to gerbes on orbifolds},
url = {http://eudml.org/doc/10503},
volume = {11},
year = {2004},
}
TY - JOUR
AU - Lupercio, Ernesto
AU - Uribe, Bernardo
TI - An introduction to gerbes on orbifolds
JO - Annales mathématiques Blaise Pascal
DA - 2004/7//
PB - Annales mathématiques Blaise Pascal
VL - 11
IS - 2
SP - 155
EP - 180
AB - This paper is a gentle introduction to some recent results involving the theory of gerbes over orbifolds for topologists, geometers and physicists. We introduce gerbes on manifolds, orbifolds, the Dixmier-Douady class, Beilinson-Deligne orbifold cohomology, Cheeger-Simons orbifold cohomology and string connections.
LA - eng
KW - gerbes; orbifolds
UR - http://eudml.org/doc/10503
ER -
References
top- A. Adem, Y. Ruan, Twisted Orbifold -Theory
- M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189 Zbl0317.14001MR399094
- M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, (1972), Springer-Verlag, Berlin Zbl0234.00007MR354653
- P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray, D. Stevenson, Twisted -theory and -theory of bundle gerbes, Comm. Math. Phys. 228 (2002), 17-45 Zbl1036.19005MR1911247
- J-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, 107 (1993), Birkhäuser Boston Inc., Boston, MA Zbl0823.55002MR1197353
- L. Carey, S. Johnson, M. Murray, Holonomy on D-Branes
- J. Cheeger, J. Simons, Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84) 1167 (1985), 50-80, Springer, Berlin Zbl0621.57010MR827262
- W. Chen, Y. Ruan, A New Cohomology Theory for Orbifold
- M. Crainic, I. Moerdijk, A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25-46 Zbl0954.22002MR1752294
- P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
- L. Dixon, J. Harvey, C. Vafa, E. Witten, Strings on orbifolds. II, Nuclear Phys. B 274 (1986), 285-314 MR851703
- L. Dixon, J. Harvey, C. Vafa, E. Witten, Strings on orbifolds. II, Nuclear Phys. B 274 (1986), 285-314 MR851703
- P. Donovan, M. Karoubi, Graded Brauer groups and -theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970), 5-25 Zbl0207.22003MR282363
- D. Freed, -theory in quantum field theory, Current developments in mathematics, 2001 (2002), 41-87, Int. Press, Somerville, MA Zbl1036.19004
- D. Freed, M. Hopkins, On Ramond-Ramond fields and -theory, J. High Energy Phys. (2000) Zbl0990.81624MR1769477
- D. Freed, E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999), 819-851 Zbl1028.81052MR1797580
- D. Freed, M. Hopkins, C. Teleman, Twisted equivariant -theory with complex coefficients
- K. Gomi, Y. Terashima, Higher-dimensional parallel transports, Math. Res. Lett. 8 (2001), 25-33 Zbl1008.53027MR1825257
- A. Haefliger, Groupoïdes d’holonomie et classifiants, Astérisque (1984), 70-97 Zbl0562.57012MR755163
- N. Hitchin, Lectures on Special Lagrangian Submanifolds Zbl1079.14522MR1876068
- M.J. Hopkins, I.M. Singer, Quadratic functions in geometry, topology,and M-theory Zbl1116.58018
- T. Kawasaki, The signature theorem for -manifolds, Topology 17 (1978), 75-83 Zbl0392.58009MR474432
- T. Kawasaki, The Riemann-Roch theorem for complex -manifolds, Osaka J. Math. 16 (1979), 151-159 Zbl0405.32010MR527023
- T. Kawasaki, The index of elliptic operators over -manifolds, Nagoya Math. J. 84 (1981), 135-157 Zbl0437.58020MR641150
- E. Lupercio, B. Uribe, Differential Characters for Orbifolds and string connections I Zbl1111.58031
- E. Lupercio, B. Uribe, Differential Characters for Orbifolds and string connections II Zbl1111.58031
- E. Lupercio, B. Uribe, Gerbes over Orbifolds and Twisted K-theory Zbl1068.53034MR2045679
- E. Lupercio, B. Uribe, Holonomy for gerbes over orbifolds Zbl1099.53040
- E. Lupercio, B. Uribe, Inertia orbifolds, configuration spaces and the ghost loop space Zbl1066.55006MR2068317
- E. Lupercio, B. Uribe, Deligne Cohomology for Orbifolds, discrete torsion and B-fields, Geometric and Topological methods for Quantum Field Theory (2002), World Scientific Zbl1055.81608MR2010004
- E. Lupercio, B. Uribe, Loop groupoids, gerbes, and twisted sectors on orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 163-184, Amer. Math. Soc., Providence, RI Zbl1041.58008MR1950946
- I. Moerdijk, Classifying topos and foliations, Ann. Inst. Fourier 41 (1991), 189-209 Zbl0727.57029MR1112197
- I. Moerdijk, Proof of a conjecture of A. Haefliger, Topology 37 (1998), 735-741 Zbl0897.22003MR1607724
- I. Moerdijk, D. A. Pronk, Orbifolds, sheaves and groupoids, -Theory 12 (1997), 3-21 Zbl0883.22005MR1466622
- I. Moerdijk, D. A. Pronk, Simplicial cohomology of orbifolds, Indag. Math. (N.S.) 10 (1999), 269-293 Zbl1026.55007MR1816220
- Y. Ruan, Discrete torsion and twisted orbifold cohomology Zbl1089.57017
- Y. Ruan, Gerbes and twisted orbifold quantum cohomology Zbl1146.53069
- Y. Ruan, Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) 312 (2002), 187-233, Amer. Math. Soc., Providence, RI Zbl1060.14080MR1941583
- Y. Ruan, Stringy orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 259-299, Amer. Math. Soc., Providence, RI Zbl1080.14500MR1950951
- I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363 Zbl0074.18103MR79769
- G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 105-112 Zbl0199.26404MR232393
- E. Sharpe, Discrete torsion, quotient stacks, and string orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) 310 (2002), 301-331, Amer. Math. Soc., Providence, RI Zbl1042.81075MR1950952
- W. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975
- C. Vafa, E. Witten, On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995), 189-214 Zbl0816.53053MR1316330
- A. Weil, Sur les théorèmes de de Rham, Comment. Math. Helv. 26 (1952), 119-145 Zbl0047.16702MR50280
- E. Witten, Overview of -theory applied to strings, Strings 2000. Proceedings of the International Superstrings Conference (Ann Arbor, MI) 16 (2001), 693-706 Zbl1003.81020MR1827946
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.