Classifying toposes and foliations
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 1, page 189-209
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMoerdijk, Ieke. "Classifying toposes and foliations." Annales de l'institut Fourier 41.1 (1991): 189-209. <http://eudml.org/doc/74913>.
@article{Moerdijk1991,
abstract = {For any etale topological groupoid $G$ (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space $B\Gamma ^ q$.},
author = {Moerdijk, Ieke},
journal = {Annales de l'institut Fourier},
keywords = {étale topological groupoid; classifying topos; classifying space; fundamental group; Haefliger's classifying space},
language = {eng},
number = {1},
pages = {189-209},
publisher = {Association des Annales de l'Institut Fourier},
title = {Classifying toposes and foliations},
url = {http://eudml.org/doc/74913},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Moerdijk, Ieke
TI - Classifying toposes and foliations
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 189
EP - 209
AB - For any etale topological groupoid $G$ (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space $B\Gamma ^ q$.
LA - eng
KW - étale topological groupoid; classifying topos; classifying space; fundamental group; Haefliger's classifying space
UR - http://eudml.org/doc/74913
ER -
References
top- [1] (SGA4) M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER, Théorie de topos et cohomologie des schémas, SLN, 269, 270 (1972). Zbl0237.00012
- [2] M. ARTIN, B. MAZUR, Etale homotopy, SLN, 100 (1969). Zbl0182.26001MR39 #6883
- [3] R. BARRE, De quelques aspects de la théorie des Q-variétés différentielles et analytiques, Ann. Inst. Fourier, Grenoble, 23-3 (1973), 227-312. Zbl0258.57008MR50 #1275
- [4] R. BOTT, Characteristic classes and foliations, in : Lectures on Algebraic and Differential Topology, SLN, 279 (1972), 1-94. Zbl0241.57010
- [5] M. BUNGE, An application of descent to a classification theorem for toposes, McGill University, preprint, 1988. Zbl0698.18003
- [6] P. DELIGNE, Théorie de Hodge III, Publ. Math. IHES, 44 (1975), 5-77. Zbl0237.14003
- [7] R. DIACONESCU, Change of base for toposes with generators, J. Pure and Appl. Alg., 6 (1975), 191-218. Zbl0353.18002MR52 #532
- [8] J. DUSKIN, Simplicial methods and the interpretation of “triple” cohomology, Memoirs AMS, 163 (1975). Zbl0376.18011MR52 #14006
- [9] W.T. VAN EST, Rapport sur les S-atlas, Astérisque, 116 (1984), 235-292. Zbl0543.58003
- [10] P. GABRIEL, M. ZISMAN, Calculus of Fractions and Homotopy Theory, Springer-Verlag, 1967. Zbl0186.56802
- [11] J. GIRAUD, Classifying topos ; in : F.W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, SLN, 274 (1972), 43-56. Zbl0267.18014MR50 #2300
- [12] A. GROTHENDIECK, Revêtements étales et groupe fondamental, SLN, 224 (1971) (SGA I). Zbl0234.14002
- [13] A. HAEFLIGER, Feuilletages sur les variétés ouvertes, Topology, 1 (1970), 183-194. Zbl0196.26901MR41 #7709
- [14] A. HAEFLIGER, Homotopy and Integrability, in : Manifolds, Amsterdam 1970, SLN, 197 (1971), 133-163. Zbl0215.52403MR44 #2251
- [15] A. HAEFLIGER, Groupoïde d'holonomie et classifiants, Astérisque, 116 (1984), 235-292. Zbl0562.57012
- [16] L. ILLUSIE, Complexe cotangent et déformations II, SLN, 283 (1972). Zbl0238.13017MR58 #10886b
- [17] J.F. JARDINE, Simplicial objects in a Grothendieck topos, in : Contemporary Mathematics, vol. 55, part I (1986), 193-239. Zbl0606.18006MR88g:18008
- [18] J.F. JARDINE, Simplicial presheaves, J. Pure and Appl. Alg., 47, 35-87. Zbl0624.18007MR88j:18005
- [19] P.T. JOHNSTONE, Topos Theory, Academic Press, 1977. Zbl0368.18001MR57 #9791
- [20] A. JOYAL, Letter to A. Grothendieck, (1984).
- [21] A. JOYAL, G. WRAITH, K(π, n)-toposes, in : Contempary Mathematics, vol 30 (1983).
- [22] A. JOYAL, M. TIERNEY, An extension of the Galois theory of Grothendieck, Memoirs AMS, 309 (1984). Zbl0541.18002MR86d:18002
- [23] I. MOERDIJK, The classifying topos of a continous groupoid I, Transactions AMS, 310 (1988), 629-668. Zbl0706.18007MR90a:18005
- [24] I. MOERDIJK, Toposes and Groupoids, in : F. Borceux (ed), Categorical Algebra and its Applications, SLN, 1348 (1988), 280-298. Zbl0659.18008MR89m:18003
- [25] P. MOLINO, Sur la géométrie transverse des feuilletages, Ann. Inst. Fourier, Grenoble, 25-2 (1975), 279-284. Zbl0301.57016MR52 #11945
- [26] J. PRADINES, A.A. ALTA'AI, Caractérisation universelle du groupe de van Est d'une espace de feuilles ou d'orbites, et théorème de van Kampen, preprint, 1989. Zbl0698.58053
- [27] J. PRADINES, J. WOUAFA-KAMGA, La catégorie des QF-variétés, CRAS (série A), 288 (1979), 717-719. Zbl0411.57026MR80d:57018
- [28] D. QUILLEN, Higher Algebraic K-theory : I ; in Springer LNM, 341 (1972), 85-147. Zbl0292.18004MR49 #2895
- [29] G.B. SEGAL, Classifying spaces and spectral sequences, Publ. Math. IHES, 34 (1968), 105-112. Zbl0199.26404MR38 #718
- [30] G.B. SEGAL, Categories and cohomology theories, Topology, 13 (1974), 304-307. Zbl0284.55016MR50 #5782
- [31] G.B. SEGAL, Classifying spaces related to foliations, Topology, 17 (1978), 367-382. Zbl0398.57018MR80h:57036
- [32] B. SAINT-DONAT, Techniques de descente cohomologique, in SLN 270 (cf. [1] above), 83-162. Zbl0317.14007
- [33] I. SATAKE, On a generalization of the notion of manifold, Proc. Nat. Ac. Sc., 42 (1956), 359-363. Zbl0074.18103MR18,144a
- [34] J. TAPIA, Sur la cohomologie de certains espaces d'orbites, thèse, Univ. Paul Sabatier, Toulouse, 1987.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.