Classifying toposes and foliations

Ieke Moerdijk

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 1, page 189-209
  • ISSN: 0373-0956

Abstract

top
For any etale topological groupoid G (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space B Γ q .

How to cite

top

Moerdijk, Ieke. "Classifying toposes and foliations." Annales de l'institut Fourier 41.1 (1991): 189-209. <http://eudml.org/doc/74913>.

@article{Moerdijk1991,
abstract = {For any etale topological groupoid $G$ (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space $B\Gamma ^ q$.},
author = {Moerdijk, Ieke},
journal = {Annales de l'institut Fourier},
keywords = {étale topological groupoid; classifying topos; classifying space; fundamental group; Haefliger's classifying space},
language = {eng},
number = {1},
pages = {189-209},
publisher = {Association des Annales de l'Institut Fourier},
title = {Classifying toposes and foliations},
url = {http://eudml.org/doc/74913},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Moerdijk, Ieke
TI - Classifying toposes and foliations
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 1
SP - 189
EP - 209
AB - For any etale topological groupoid $G$ (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space $B\Gamma ^ q$.
LA - eng
KW - étale topological groupoid; classifying topos; classifying space; fundamental group; Haefliger's classifying space
UR - http://eudml.org/doc/74913
ER -

References

top
  1. [1] (SGA4) M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER, Théorie de topos et cohomologie des schémas, SLN, 269, 270 (1972). Zbl0237.00012
  2. [2] M. ARTIN, B. MAZUR, Etale homotopy, SLN, 100 (1969). Zbl0182.26001MR39 #6883
  3. [3] R. BARRE, De quelques aspects de la théorie des Q-variétés différentielles et analytiques, Ann. Inst. Fourier, Grenoble, 23-3 (1973), 227-312. Zbl0258.57008MR50 #1275
  4. [4] R. BOTT, Characteristic classes and foliations, in : Lectures on Algebraic and Differential Topology, SLN, 279 (1972), 1-94. Zbl0241.57010
  5. [5] M. BUNGE, An application of descent to a classification theorem for toposes, McGill University, preprint, 1988. Zbl0698.18003
  6. [6] P. DELIGNE, Théorie de Hodge III, Publ. Math. IHES, 44 (1975), 5-77. Zbl0237.14003
  7. [7] R. DIACONESCU, Change of base for toposes with generators, J. Pure and Appl. Alg., 6 (1975), 191-218. Zbl0353.18002MR52 #532
  8. [8] J. DUSKIN, Simplicial methods and the interpretation of “triple” cohomology, Memoirs AMS, 163 (1975). Zbl0376.18011MR52 #14006
  9. [9] W.T. VAN EST, Rapport sur les S-atlas, Astérisque, 116 (1984), 235-292. Zbl0543.58003
  10. [10] P. GABRIEL, M. ZISMAN, Calculus of Fractions and Homotopy Theory, Springer-Verlag, 1967. Zbl0186.56802
  11. [11] J. GIRAUD, Classifying topos ; in : F.W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, SLN, 274 (1972), 43-56. Zbl0267.18014MR50 #2300
  12. [12] A. GROTHENDIECK, Revêtements étales et groupe fondamental, SLN, 224 (1971) (SGA I). Zbl0234.14002
  13. [13] A. HAEFLIGER, Feuilletages sur les variétés ouvertes, Topology, 1 (1970), 183-194. Zbl0196.26901MR41 #7709
  14. [14] A. HAEFLIGER, Homotopy and Integrability, in : Manifolds, Amsterdam 1970, SLN, 197 (1971), 133-163. Zbl0215.52403MR44 #2251
  15. [15] A. HAEFLIGER, Groupoïde d'holonomie et classifiants, Astérisque, 116 (1984), 235-292. Zbl0562.57012
  16. [16] L. ILLUSIE, Complexe cotangent et déformations II, SLN, 283 (1972). Zbl0238.13017MR58 #10886b
  17. [17] J.F. JARDINE, Simplicial objects in a Grothendieck topos, in : Contemporary Mathematics, vol. 55, part I (1986), 193-239. Zbl0606.18006MR88g:18008
  18. [18] J.F. JARDINE, Simplicial presheaves, J. Pure and Appl. Alg., 47, 35-87. Zbl0624.18007MR88j:18005
  19. [19] P.T. JOHNSTONE, Topos Theory, Academic Press, 1977. Zbl0368.18001MR57 #9791
  20. [20] A. JOYAL, Letter to A. Grothendieck, (1984). 
  21. [21] A. JOYAL, G. WRAITH, K(π, n)-toposes, in : Contempary Mathematics, vol 30 (1983). 
  22. [22] A. JOYAL, M. TIERNEY, An extension of the Galois theory of Grothendieck, Memoirs AMS, 309 (1984). Zbl0541.18002MR86d:18002
  23. [23] I. MOERDIJK, The classifying topos of a continous groupoid I, Transactions AMS, 310 (1988), 629-668. Zbl0706.18007MR90a:18005
  24. [24] I. MOERDIJK, Toposes and Groupoids, in : F. Borceux (ed), Categorical Algebra and its Applications, SLN, 1348 (1988), 280-298. Zbl0659.18008MR89m:18003
  25. [25] P. MOLINO, Sur la géométrie transverse des feuilletages, Ann. Inst. Fourier, Grenoble, 25-2 (1975), 279-284. Zbl0301.57016MR52 #11945
  26. [26] J. PRADINES, A.A. ALTA'AI, Caractérisation universelle du groupe de van Est d'une espace de feuilles ou d'orbites, et théorème de van Kampen, preprint, 1989. Zbl0698.58053
  27. [27] J. PRADINES, J. WOUAFA-KAMGA, La catégorie des QF-variétés, CRAS (série A), 288 (1979), 717-719. Zbl0411.57026MR80d:57018
  28. [28] D. QUILLEN, Higher Algebraic K-theory : I ; in Springer LNM, 341 (1972), 85-147. Zbl0292.18004MR49 #2895
  29. [29] G.B. SEGAL, Classifying spaces and spectral sequences, Publ. Math. IHES, 34 (1968), 105-112. Zbl0199.26404MR38 #718
  30. [30] G.B. SEGAL, Categories and cohomology theories, Topology, 13 (1974), 304-307. Zbl0284.55016MR50 #5782
  31. [31] G.B. SEGAL, Classifying spaces related to foliations, Topology, 17 (1978), 367-382. Zbl0398.57018MR80h:57036
  32. [32] B. SAINT-DONAT, Techniques de descente cohomologique, in SLN 270 (cf. [1] above), 83-162. Zbl0317.14007
  33. [33] I. SATAKE, On a generalization of the notion of manifold, Proc. Nat. Ac. Sc., 42 (1956), 359-363. Zbl0074.18103MR18,144a
  34. [34] J. TAPIA, Sur la cohomologie de certains espaces d'orbites, thèse, Univ. Paul Sabatier, Toulouse, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.