Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable

A. El Ghali

RAIRO - Operations Research - Recherche Opérationnelle (1992)

  • Volume: 26, Issue: 3, page 237-267
  • ISSN: 0399-0559

How to cite

top

El Ghali, A.. "Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable." RAIRO - Operations Research - Recherche Opérationnelle 26.3 (1992): 237-267. <http://eudml.org/doc/105039>.

@article{ElGhali1992,
author = {El Ghali, A.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {generalized reduced subgradient method; nondifferentiable case; reduced gradient algorithms},
language = {fre},
number = {3},
pages = {237-267},
publisher = {EDP-Sciences},
title = {Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable},
url = {http://eudml.org/doc/105039},
volume = {26},
year = {1992},
}

TY - JOUR
AU - El Ghali, A.
TI - Méthode du sous-gradient réduit généralisé comme extension du GRG d'Abadie au cas non différentiable
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 3
SP - 237
EP - 267
LA - fre
KW - generalized reduced subgradient method; nondifferentiable case; reduced gradient algorithms
UR - http://eudml.org/doc/105039
ER -

References

top
  1. 1. J. ABADIE et J. CARPENTIER, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, In Optimization, R. FLETCHER ed., London Academic, 1969. Zbl0254.90049MR284206
  2. 2. A. BIHAIN, V. H. NGUYEN et J. J. STRODIOT, A Reduced Subgradient Algorithm, Math. Programming Study, 1987, 30, pp. 127-149. Zbl0624.90085MR874135
  3. 3. A. BIHAIN, Numerical and Algorithmic Contributions to the Constrained Optimization of Some Classes of Non-Differentiable Functions, Ph. D. Thesis, F.U.N.D.P., Namur, Belgium, 1984. Zbl0534.90069
  4. 4. E. K. BLUM, Numerical Analysis and Computation, Theory and Practice, Addison-Wesley, New York, 1972. Zbl0273.65001MR408185
  5. 5. J. A. CHATELON, D. W. HEARN et J. J. LOWE, A Subgradient Algorithm for Certain Minimax and Minisum Problems, S.I.A.M., J. Control Optim., S.I.A.M., J. Control Optim., 1982,20, pp. 455-469. Zbl0498.49020MR661026
  6. 6. M. GAUDIOSO et M. F. MONACO, A Bundle Type Approach to the Unconstrained Minimization of Convex Nonsmooth Functions, Math. Programming, 1982, 23, pp. 216-226. Zbl0479.90066MR657081
  7. 7. W. GOCHET et Y SMEERS, A Modified Reduced Gradient Method for a Class of Nondifferentiable Problems, Math. Programming, 1980, 19, pp. 137-154. Zbl0454.90058MR583275
  8. 8. P. HUARD, Convergence of the Reduced Gradient Method, In Nonlinear Programming, O. L. MANGASARIAN, R. R. MEYER et S. M. ROBINSON, éd., Academic Press, New York, 1975, 2, pp. 29-54. Zbl0323.90046MR421678
  9. 9. P. HUARD, Un algorithme général de gradient réduit, Bulletin de la Direction des Études et Recherches, E.D.F., 1980, Série C, 2, pp. 91-109. Zbl0582.65052MR700427
  10. 10. C. LEMARÉCHAL et R. MIFFLIN, Nonsmooth optimization, Pergamon Press, New York, 1977. Zbl0391.00019MR537890
  11. 11. C. LEMARÉCHAL, Extensions diverses des méthodes de gradients et applications, Thèse d'État, Paris-IX Dauphine, Paris, 1980. 
  12. 12. C. LEMARÉCHAL, An Extension of Davidon Methods to Non-Differentiable Problems, Math. Programming Study, 1975, 3, pp. 95-109. Zbl0358.90051MR436586
  13. 13. C. LEMARÉCHAL, J. J. STRODIOTet A. BIHAIN, On a Bundle Algorithm for Nonsmooth Optimization, In Nonlinear Programming, O. L. MANGASARIAN, R. R.MEYER et S. M. ROBINSON éd., Academic Press, New York, 1981, 4, pp. 245-282. Zbl0533.49023MR663383
  14. 14. C. LEMARÉCHALA View of Line Search, In Lecture Notes in Control and Information Science A. AUSLENDER, W. OETTLLI et J. STOER, éd., Springer, Berlin, 1981. Zbl0458.65054MR618474
  15. 15. D. G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Academic Press, New York, 1973. Zbl0297.90044
  16. 16. R. MIFFLINA Stable Method for Solving Certain Constrained Least Squares Problems, Math. Programming, 1979, 16, pp. 141-158. Zbl0407.90065MR527571
  17. 17. R. MIFFLINAn Algorithm for Constrained Optimization with Semi Smooth Functions, Math. Oper. Res., 1977, 2, pp. 191-207. Zbl0395.90069MR474815
  18. 18. R. MIFFLIN, Convergence of a Modification of Lemaréchal's Algorithm for non Smooth Optimization, In Progress in non differentiable Optimization, E. A.Nurminski ed., I.I.A.S.A., Laxenburg, Austria, 1982. Zbl0502.65039
  19. 19. H. MOKHTAR-KHARROUBI, Sur la convergence théorique de la méthode du gradient réduit généralisé, Numer. Math., 1980, 34, pp. 73-85. Zbl0414.65037MR560795
  20. 20. H. MOKHTAR-KHARROUBI, Sur quelques méthodes de gradient réduit sous contraintes linéaires, R.A.I.R.O., Anal. Numér., 1979, 13, n° 2, pp. 167-180. Zbl0409.90075MR533880
  21. 21. Y. SMEERS, Generalized Reduced Gradient Method as an Extension of Feasible Directions Methods, J. Optim. Theory Appl., 1977, 22, n° 2, pp. 209-226. Zbl0336.65035MR452705
  22. 22. J. J. STRODIOT, V. H. NGUYEN et N. HEUKEMES, ε-Optimal Solutions in non Differentiable Convex Programming and some Related Questions, Math. Programming, 1983, 25, pp. 307-328. Zbl0495.90067MR689660
  23. 23. P. WOLFE, Reduced Gradient Method, Rand Document, June 1962. 
  24. 24. P. WOLFE, On the Convergence of Gradient Methods under Constraints, I.B.M. Journal, 1972, pp. 407-411. Zbl0265.90046MR331177
  25. 25. P. WOLFE, Convergence Conditions for Ascent Methods, S.I.A.M. Review, 1969,11, pp. 226-234. Zbl0177.20603MR250453
  26. 26. P. WOLFE, A Method for Conjugate Subgradients for Minimizing non Differentiable Functions, Math. Programming Study, 1975, 3, pp. 145-173. Zbl0369.90093MR448896
  27. 27. W. ZANGWILL, The Convex-Simplex Methods, Management Sci., 1967, 14, pp. 221-238. Zbl0153.49002MR269300

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.