Sur la dualité en optimisation vectorielle convexe

I. Kouada

RAIRO - Operations Research - Recherche Opérationnelle (1994)

  • Volume: 28, Issue: 3, page 255-281
  • ISSN: 0399-0559

How to cite

top

Kouada, I.. "Sur la dualité en optimisation vectorielle convexe." RAIRO - Operations Research - Recherche Opérationnelle 28.3 (1994): 255-281. <http://eudml.org/doc/105085>.

@article{Kouada1994,
author = {Kouada, I.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {cone; cone-lower semi-continuity; convex vector optimization; multiobjective optimization},
language = {fre},
number = {3},
pages = {255-281},
publisher = {EDP-Sciences},
title = {Sur la dualité en optimisation vectorielle convexe},
url = {http://eudml.org/doc/105085},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Kouada, I.
TI - Sur la dualité en optimisation vectorielle convexe
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1994
PB - EDP-Sciences
VL - 28
IS - 3
SP - 255
EP - 281
LA - fre
KW - cone; cone-lower semi-continuity; convex vector optimization; multiobjective optimization
UR - http://eudml.org/doc/105085
ER -

References

top
  1. 1. G. R. BITRAN, Duality for Nonlinear Multiple Criteria Optimization Problems, Journal of Optimization Theory and Applications (JOTA), 35, 1981, p. 367-401 Zbl0445.90082MR642482
  2. 2. S. BRUMELLE, Duality for Multiple Objective Convex Programs, Mathematics of Operations Research, 6, 1981, p. 159-172. Zbl0497.90068MR616342
  3. 3. H. N. CORLEY, Duality for Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications, 84, 1981, p. 560-568. Zbl0474.90081MR639684
  4. 4. J. G. ECKER and I. A. KOUADA, Finding Efficient Points for linear Multiple Objective Programs, Mathematical Programming, 8, 1975, p. 375-377. Zbl0385.90105MR371391
  5. 5. A. M. GEOFFRION, Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, 22, 1968, p. 618-630. Zbl0181.22806MR229453
  6. 6. R. HARTLEY, On Cone Efficiency, Cone Convexity and Cone Compactness, SIAM Journal on Applied Mathematics, 34, 1978, p. 211-222. Zbl0379.90005MR487977
  7. 7. H. ISERMANN, On Some Relations Between a Dual Pair of Multiple Objective Programs, Zeitschrift Für Operations Research, 22, 1978, p. 33-41. Zbl0375.90049MR479375
  8. 8. J. JAHN, Duality In Vector Optimization, Mathematical Programming, 25, 1983, p. 343-353. Zbl0497.90067MR689662
  9. 9. I. A. KOUADA, Sur la propriété de domination et l'existence de points Pareto-efficaces en optimisation vectorielle convexe, À paraître dans RAIRO-operations research. Zbl0857.90114
  10. 10. H. W. KUHN and A. W. TUCKER, Nonlinear Programming Proceeding of the second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, 1950, p. 481-492. Zbl0044.05903MR47303
  11. 11. D. T. Luc, About Duality and Alternative in Multiobjective Optimization, JOTA, 27, 1979, p. 509-529. Zbl0597.90086MR533118
  12. 12. D. T. LUC, On Duality Theory in Multiobjective Programming, JOTA, 43, n° 4, août 1984. Zbl0517.90076MR759616
  13. 13. O. L. MANGASARIAN, Nonlinear Programming, Mc Graw Hill Book Company, New York, 1969. Zbl0594.90052
  14. 14. H. NAKAYAMA, Geometric Consideration in Vector optimization, JOTA, 44, n° 4, décembre 1984, p. 625-655. Zbl0534.90079MR777817
  15. 15. J. W. NIEUWENHUIS, About Isermann Duality, JOTA, 41, n° 1, 1980. Zbl0502.90078MR728315
  16. 16. R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1972. Zbl0193.18401MR274683
  17. 17. T. TANINO and Y. SAWARAGI, Duality Theory in Multiobjective Programming, JOTA, 27, 1979, p. 509-529. Zbl0378.90100MR533118
  18. 18. P. L. Yu, Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, JOTA, 14, n° 3, 1974. Zbl0268.90057MR381739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.