Cone convexity of measured set vector functions and vector optimization
RAIRO - Operations Research - Recherche Opérationnelle (1997)
- Volume: 31, Issue: 3, page 211-230
- ISSN: 0399-0559
Access Full Article
topHow to cite
topKouada, I.. "Cone convexity of measured set vector functions and vector optimization." RAIRO - Operations Research - Recherche Opérationnelle 31.3 (1997): 211-230. <http://eudml.org/doc/105149>.
@article{Kouada1997,
author = {Kouada, I.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {cone-convex set function; cone-optimal solution; Morris sequences},
language = {eng},
number = {3},
pages = {211-230},
publisher = {EDP-Sciences},
title = {Cone convexity of measured set vector functions and vector optimization},
url = {http://eudml.org/doc/105149},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Kouada, I.
TI - Cone convexity of measured set vector functions and vector optimization
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 3
SP - 211
EP - 230
LA - eng
KW - cone-convex set function; cone-optimal solution; Morris sequences
UR - http://eudml.org/doc/105149
ER -
References
top- 1. J. H. CHOU, WEI-SHEN HSIA and TAN-YU LEE, Epigraphs of Convex Set Functions, Journal of Mathematical Analysis and Applications, 1986, 118, pp. 247-254. Zbl0599.49014MR849458
- 2. W. S. HSIA and T. Y LEE, Proper D-Solutions of Multiobjective Programming Problems with Set Functions, Journal of Optimization Theory and Applications, 1987, May, 53, n° 2, pp. 247-258. Zbl0595.90084MR891371
- 3. W. S. HSIA and T. Y. LEE, Lagrangian Function and Duality Theory in Multiobjective Programming with set Function, Journal of Optimization Theory and Applications, 1988, May, 57, n° 2, pp.239-251. Zbl0619.90072MR938873
- 4. ARTHUR M. GEOFFRION, Proper Efficiency and TheTheory of Vector Maximization, Journal of Mathematical Analysis and Applications, 1968, 22, pp. 618-630. Zbl0181.22806MR229453
- 5. ISSOUFOU A. KOUADA, Sur la Dualité en Optimisation Vectorielle Convexe, Recherche Opérationnelle, Opérations Research 1994, 28, n° 3, pp. 255-281. Zbl0830.90123MR1290531
- 6. ROBERT J. T. MORRIS, Optimal Constrained Selection of a Measurable Subset, Journal of Mathematical Analysis and Applications, 1979, 70,pp. 546-562. Zbl0417.49032MR543593
- 7. OLVI MANGASARIAN, Nonlinear Programming, McGraw Hill Book Company, New York, 1969. Zbl0527.00013MR252038
- 8. R. TYRELL ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1972. Zbl0193.18401
- 9. H. H. SCHAEFFER, Topological Vector Spaces, Springer Verlag New York, 1970. Zbl0435.46003
- 10. P. L. Yu, Cone Convexlty, Cone Extreme Points and Nondominated Solutions in Décision Problems with Multiobjectives, ournal of Optimization Theory and Applications, 1974, 14, n° 3, pp. 319-377. Zbl0268.90057MR381739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.