Cone convexity of measured set vector functions and vector optimization

I. Kouada

RAIRO - Operations Research - Recherche Opérationnelle (1997)

  • Volume: 31, Issue: 3, page 211-230
  • ISSN: 0399-0559

How to cite

top

Kouada, I.. "Cone convexity of measured set vector functions and vector optimization." RAIRO - Operations Research - Recherche Opérationnelle 31.3 (1997): 211-230. <http://eudml.org/doc/105149>.

@article{Kouada1997,
author = {Kouada, I.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {cone-convex set function; cone-optimal solution; Morris sequences},
language = {eng},
number = {3},
pages = {211-230},
publisher = {EDP-Sciences},
title = {Cone convexity of measured set vector functions and vector optimization},
url = {http://eudml.org/doc/105149},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Kouada, I.
TI - Cone convexity of measured set vector functions and vector optimization
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1997
PB - EDP-Sciences
VL - 31
IS - 3
SP - 211
EP - 230
LA - eng
KW - cone-convex set function; cone-optimal solution; Morris sequences
UR - http://eudml.org/doc/105149
ER -

References

top
  1. 1. J. H. CHOU, WEI-SHEN HSIA and TAN-YU LEE, Epigraphs of Convex Set Functions, Journal of Mathematical Analysis and Applications, 1986, 118, pp. 247-254. Zbl0599.49014MR849458
  2. 2. W. S. HSIA and T. Y LEE, Proper D-Solutions of Multiobjective Programming Problems with Set Functions, Journal of Optimization Theory and Applications, 1987, May, 53, n° 2, pp. 247-258. Zbl0595.90084MR891371
  3. 3. W. S. HSIA and T. Y. LEE, Lagrangian Function and Duality Theory in Multiobjective Programming with set Function, Journal of Optimization Theory and Applications, 1988, May, 57, n° 2, pp.239-251. Zbl0619.90072MR938873
  4. 4. ARTHUR M. GEOFFRION, Proper Efficiency and TheTheory of Vector Maximization, Journal of Mathematical Analysis and Applications, 1968, 22, pp. 618-630. Zbl0181.22806MR229453
  5. 5. ISSOUFOU A. KOUADA, Sur la Dualité en Optimisation Vectorielle Convexe, Recherche Opérationnelle, Opérations Research 1994, 28, n° 3, pp. 255-281. Zbl0830.90123MR1290531
  6. 6. ROBERT J. T. MORRIS, Optimal Constrained Selection of a Measurable Subset, Journal of Mathematical Analysis and Applications, 1979, 70,pp. 546-562. Zbl0417.49032MR543593
  7. 7. OLVI MANGASARIAN, Nonlinear Programming, McGraw Hill Book Company, New York, 1969. Zbl0527.00013MR252038
  8. 8. R. TYRELL ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1972. Zbl0193.18401
  9. 9. H. H. SCHAEFFER, Topological Vector Spaces, Springer Verlag New York, 1970. Zbl0435.46003
  10. 10. P. L. Yu, Cone Convexlty, Cone Extreme Points and Nondominated Solutions in Décision Problems with Multiobjectives, ournal of Optimization Theory and Applications, 1974, 14, n° 3, pp. 319-377. Zbl0268.90057MR381739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.