The trust region affine interior point algorithm for convex and nonconvex quadratic programming
RAIRO - Operations Research - Recherche Opérationnelle (1995)
- Volume: 29, Issue: 2, page 195-217
- ISSN: 0399-0559
Access Full Article
topHow to cite
topBonnans, J. F., and Bouhtou, M.. "The trust region affine interior point algorithm for convex and nonconvex quadratic programming." RAIRO - Operations Research - Recherche Opérationnelle 29.2 (1995): 195-217. <http://eudml.org/doc/105104>.
@article{Bonnans1995,
author = {Bonnans, J. F., Bouhtou, M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {affine algorithms; interior point algorithm; trust region; convergence rate},
language = {eng},
number = {2},
pages = {195-217},
publisher = {EDP-Sciences},
title = {The trust region affine interior point algorithm for convex and nonconvex quadratic programming},
url = {http://eudml.org/doc/105104},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Bonnans, J. F.
AU - Bouhtou, M.
TI - The trust region affine interior point algorithm for convex and nonconvex quadratic programming
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 2
SP - 195
EP - 217
LA - eng
KW - affine algorithms; interior point algorithm; trust region; convergence rate
UR - http://eudml.org/doc/105104
ER -
References
top- 1. I. ADLER, M. G. C. RESENDE, G. VEIGA, An implementation of Karmarkar's algorithm for linear programming, Math. Programming, 1989, 44, pp. 297-335. Zbl0682.90061MR1028226
- 2. I. ADLER, R. D. C. MONTEIRO, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Programming, 1991, 50, pp. 29-51. Zbl0719.90044MR1098845
- 3. E. R. BARNES, A variation on Karmarkar's algorithm for solving linear programming, Math Programming, 1986, 36, pp. 174-182. Zbl0626.90052MR866987
- 4. F. DELEBECQUE, C. KLIMANN, S. STEER, Basile. Un système de CAO pour l'automatique, Version 3.0. Guide d'utilisation, INRIA, Mars 1989.
- 5. D. A. BAYER, J. C. LAGARIAS, The nonlinear geometry of linear programming: I Affine and projective trajectories, Trans, Amer. Math. Soc., 1989, (2), 314, pp. 499-526. Zbl0671.90045MR1005525
- 6. M. BOUTHOU, Méthodes de points intérieurs pour l'optimisation des systèmes de grande taille, Thèse de Doctorat, Université Paris Dauphine, 1993.
- 7. J.-P. BULTEAU, J.-P. VIAL, A restricted trust region algorithms for unconstrained optimization, Optim. Theory and Appl., 1985, 47, n° 4, pp. 413-435. Zbl0556.90075MR818870
- 8. E. CASAS, C. POLA, Dealing with degenerated cases in quadratic programs, RAIRO-Operations Research, 1994, 27, n° 4, pp. 401 à 426. Zbl0795.90048MR1250365
- 9. I. I. DIKIN, Iterative solutions of problems of linear and quadratic programming, Soviet. Math. Doklady, 1967, 8, pp. 674-675. Zbl0189.19504
- 10. C. C. GONZAGA, L. A. CARLOS, A primal affine scaling algorithm for linearly constrained convex programs, Report, Federal University of Rio de Janeiro.
- 11. C. C. GONZAGA, Convergence of the large step primal affine scaling algorithm for primal non-degenerate linear programs, Tech. Report, Federal University of Rio de Janeiro, Brazil.
- 12. M. D. HEBDEN, An algorithm for minimization using exact second derivatives. Atomic Energy Research, Establishment report TP 515, Harwell, England 1973.
- 13. N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 1984, 4, pp. 373-395. Zbl0557.90065MR779900
- 14. M. KOJIMA, S. MIZUNO, A. YOSHISE, AN O (√nL) iteration potential reduction algorithm for linear complementarity problems, Math. Programming, 1991, 50, pp. 331-342. Zbl0738.90077MR1114235
- 15. O. L. MANGASARIAN, A simple characterization of solution sets of convex programs, Oper. Res. Lett., 1988, 7, pp. 21-26. Zbl0653.90055MR936347
- 16. N. MEGIDDO, M. SHUB, Boundary behavior of interior point algorithms for linear programming, Math. Oper, Res., 1989, 14, pp. 97-146. Zbl0675.90050MR984561
- 17. R. D. C. MONTEIRO, I. ADLER, M. G. C. RESENDE, A polynomial time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extensions, Math. Oper. Res., 1990, 15 (2). Zbl0714.90060MR1051568
- 18. J. J. MORÉ, Recent developments in algorithms and software for trust region method, Born 1982, Springer Verlag. Zbl0546.90077MR717404
- 19. R. SAIGAL, A three step quadratically convergent implementation of the primal affine scalling method, Technical Report 93-9, Department of Industrial and Operational Engineering, University of Michigan, Ann-Arbor, MI-48109-2117, USA.
- 20. J. SUN, A convergence proof of an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Technical Report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA, 1990. Zbl0781.90073
- 21. P. TSENG, Z. Q. LUO, On the convergence of the affine scaling algorithm, Technical Report, CICS-P-169, Center for Intelligent Control Systems, Massachusetts Institute of Technology (Cambridge, MA, 1989). Zbl0762.90052
- 22. T. TSUCHIYA, Global convergence of the affine scaling methods for degenerate linear programming problem, Math. Programming, 1991, 52, pp. 377-404. Zbl0749.90051MR1148177
- 23. T. TSUCHIYA, Global convergence of the affine scaling algorithm for the primal degenerate strictly convex quadratic programming problems, The Institute of Statistical Mathematics, Tokyo, Japan, Technical report n° 417. Zbl0793.90055
- 24. T. TSUCHIYA, M. MURATMATSU, Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems, Research Memorandum 423, the Institute of Statistical Mathematics, 4-6-7 Minami-Azabou, Minoto-Ku, Tokyo 106, Japan, 1992. Zbl0838.90081
- 25. T. TSUCHIYA, R. D. C. MONTEIRO, Superlinear convergence of the affine scaling algorithm, Department of Systems and Industrial Engineering, University of Arizona, Tucson, Technical Report. Zbl0870.90083
- 26. R. J. VANDERBEI, S. M. MEKETON, B. A. FREEDMAN, A modification of Karmarkar's linear programming algorithm, Algorithmica, 1986, 1, pp. 395-407. Zbl0626.90056MR880730
- 27. Y. YE, E. TSE, An extension of Karmarkar's projective algorithm for convex quadratic programming, Math. Programming, 1989, 44, pp. 157-179. Zbl0674.90077MR1003558
- 28. Y. YE, On affine scaling algorithms for nonconvex quadratic programming, Math. Prog., 1992, 56, 3, pp. 285-301. Zbl0767.90065MR1187254
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.