A BSSS algorithm for the location problem with minimum square error.
In this paper, a new hybrid simulated annealing algorithm for constrained global optimization is proposed. We have developed a stochastic algorithm called ASAPSPSA that uses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to the basic simulated annealing algorithm (SA) that gives the region containing the global solution of an objective function. In addition, Simultaneous Perturbation Stochastic Approximation (SPSA)...
This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The...
We propose a new and efficient nonmonotone adaptive trust region algorithm to solve unconstrained optimization problems. This algorithm incorporates two novelties: it benefits from a radius dependent shrinkage parameter for adjusting the trust region radius that avoids undesirable directions and exploits a new strategy to prevent sudden increments of objective function values in nonmonotone trust region techniques. Global convergence of this algorithm is investigated under some mild conditions....
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
This paper is concerned with the stabilisation of linear time-delay systems by tuning a finite number of parameters. Such problems typically arise in the design of fixed-order controllers. As time-delay systems exhibit an infinite amount of characteristic roots, a full assignment of the spectrum is impossible. However, if the system is stabilisable for the given parameter set, stability can in principle always be achieved through minimising the real part of the rightmost characteristic root, or...
This paper is concerned with the stabilisation of linear time-delay systems by tuning a finite number of parameters. Such problems typically arise in the design of fixed-order controllers. As time-delay systems exhibit an infinite amount of characteristic roots, a full assignment of the spectrum is impossible. However, if the system is stabilisable for the given parameter set, stability can in principle always be achieved through minimising the real part of the rightmost characteristic...
The aim of this short contribution is to point out some applications of systems of so called two-sided -linear systems of equations and inequalities of [Gavalec, M., Zimmermann, K.: Solving systems of two-sided (max,min)-linear equations Kybernetika 46 (2010), 405–414.] to solving some fuzzy set multiple fuzzy goal problems. The paper describes one approach to formulating and solving multiple fuzzy goal problems. The fuzzy goals are given as fuzzy sets and we look for a fuzzy set, the fuzzy intersections...
In the present note we consider the definitions and properties of locally pseudo- and quasiconvex functions and give a sufficient condition for a locally quasiconvex function at a point x ∈ Rn, to be also locally pseudoconvex at the same point.
We study polyconvex envelopes of a class of functions related to the function of Kohn and Strang introduced in . We present an example of a function of this class for which the polyconvex envelope may be computed explicitly and we also point out some general features of the problem.