Analyse de systèmes min-max

Geert Jan Olsder

RAIRO - Operations Research - Recherche Opérationnelle (1996)

  • Volume: 30, Issue: 1, page 17-30
  • ISSN: 0399-0559

How to cite

top

Olsder, Geert Jan. "Analyse de systèmes min-max." RAIRO - Operations Research - Recherche Opérationnelle 30.1 (1996): 17-30. <http://eudml.org/doc/105117>.

@article{Olsder1996,
author = {Olsder, Geert Jan},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {discrete event systems; critical circuit; max-plus algebra; periodic behaviour; pulsative circuit; max-plus or min-plus systems; min-max systems; min-plus algebra},
language = {fre},
number = {1},
pages = {17-30},
publisher = {EDP-Sciences},
title = {Analyse de systèmes min-max},
url = {http://eudml.org/doc/105117},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Olsder, Geert Jan
TI - Analyse de systèmes min-max
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 1
SP - 17
EP - 30
LA - fre
KW - discrete event systems; critical circuit; max-plus algebra; periodic behaviour; pulsative circuit; max-plus or min-plus systems; min-max systems; min-plus algebra
UR - http://eudml.org/doc/105117
ER -

References

top
  1. 1. F. BACCELLI, G. COHEN et B. GAUJAL, Recursive equations and basic properties of timed Petri nets, Journal of Discrete Event Dynamic Systems, 1992, 2, p. 415-439. Zbl0753.60084
  2. 2. F. BACCELLI, G. COHEN, G. J. OLSDER et J. P. QUADRAT, Synchronization and Linearity, Wiley, 1992. Zbl0824.93003MR1204266
  3. 3. J. G. BAKER et G. J. OLSDER, The power algorithm in max-algebra, Linear Algebra and its Applications, 1993, 187, p. 67-89. Zbl0774.93019MR1207075
  4. 4. R. A. CUNINGHAME-GREEN, Minimax Algebra, Number 166 in Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1979. Zbl0399.90052MR580321
  5. 5. J. GUNAWARDENA, Min-max functions, Journal of Discrete Event Dynamic Systems, 1994, 4, p. 377-407. Zbl0841.93029
  6. 6. J. GUNAWARDENA, Periodic behaviour in timed Systems with (and, or) causality. Part I: Systems of dimensions 1 and 2, Technical report, Department of Computer Science, Stanford University, Standord, CA 94305, USA, 1993. 
  7. 7. R. M. KARP, A characterization of the minimum cycle mean in a digraph, Discrete Mathematics, 1978, 23, p. 309-311. Zbl0386.05032MR523080
  8. 8. S. MORIOKA et T. YAMADA, Performance evaluation of marked graphs by linear programming , International Journal of Systems Science, 1991, 22, p. 1541-1552. Zbl0741.90085MR1122720
  9. 9. G. J. OLSDER, Eigenvalues of dynamic min-max Systems, Journal of Discrete Event Dynamic Systems, 1991, 1, p. 177-207. Zbl0747.93014
  10. 10. G. J. OLSDER, Analyse de systèmes min-max, Technical Report 1904, INRIA, Sophia-Antipolis, France, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.