Methods for solving stochastic bilinear fractional max-min problems

Stephan Tigan; I. M. Stancu-Minasian

RAIRO - Operations Research - Recherche Opérationnelle (1996)

  • Volume: 30, Issue: 1, page 81-98
  • ISSN: 0399-0559

How to cite

top

Tigan, Stephan, and Stancu-Minasian, I. M.. "Methods for solving stochastic bilinear fractional max-min problems." RAIRO - Operations Research - Recherche Opérationnelle 30.1 (1996): 81-98. <http://eudml.org/doc/105121>.

@article{Tigan1996,
author = {Tigan, Stephan, Stancu-Minasian, I. M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {bilinear fractional programming; minimum-risk approach; Kataoka's model},
language = {eng},
number = {1},
pages = {81-98},
publisher = {EDP-Sciences},
title = {Methods for solving stochastic bilinear fractional max-min problems},
url = {http://eudml.org/doc/105121},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Tigan, Stephan
AU - Stancu-Minasian, I. M.
TI - Methods for solving stochastic bilinear fractional max-min problems
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 1
SP - 81
EP - 98
LA - eng
KW - bilinear fractional programming; minimum-risk approach; Kataoka's model
UR - http://eudml.org/doc/105121
ER -

References

top
  1. 1. A. S. BELENKII, Minimax scheduling problems with linear constraints and methods of their solutions, Avt. i Telemeh., 1981, 10, pp. 157-170. Zbl0483.90060MR705150
  2. 2. B. BEREANU, On stochastic linear programming, I: Distribution problems: A simple random variable, Revue Roumaine Math. Pures Appl., 1963, 8 (4), pp. 683-697. Zbl0137.38101MR177806
  3. 3. B. BEREANU, Programme de risque minimal en programmation linéaire stochastique, C. R. Acad. Sci. Paris, 1964, 259, pp. 981-983. Zbl0123.37301MR167333
  4. 4. A. CHARNES and W. W. COOPER, Programming with linear fractional functionals, Naval Res. Logist Quart., 1962, 9 (3-4), pp. 181-186. Zbl0127.36901MR152370
  5. 5. A. CHARNES and W. W. COOPER, Deterministic equivalents for optimizing and satisfying under change constraints, Operations Res., 1963, 11, pp. 18-39. Zbl0117.15403MR153482
  6. 6. W. D. COOK, M. J. L. KIRBY and S. L. MEHNDIRATTA, A linear fractional max-min problem, Operations Res., 1975, 23 (3), pp. 511-521. Zbl0315.90070MR459631
  7. 7. G. B. DANTZIG, Linear Programming and Extensions, Princeton Univ. Press, Princeton, New-Jersey, 1963. Zbl0997.90504MR201189
  8. 8. M. DRAGOMIRESCU, An algorithm for the minimum-risk problem of stochastic programming, Operations Res., 1972, 30 (1), pp. 154-164. Zbl0238.90053MR315893
  9. 9. M. DRAGOMIRESCU and M. MALITA, Programare neliniara, Editura Stiintifica, Bucuresti, 1972. 
  10. 10. E. G. GOLSTEIN, Duality theory in mathematical programming and its applications, Nauka, Moskva, 1971, (in russian). MR322531
  11. 11. S. KATAOKA, A stochastic programming model, Econometrica, 1963, 31, pp. 181-196. Zbl0125.09601MR155696
  12. 12. S. SCHAIBLE, Nonlinear Fractional Programming, Oper. Res. Verfahren, 1974, 19, pp. 109-115. Zbl0357.90056MR444037
  13. 13. R. G. SCHROEDER, Linear programming solutions to ratio games, Operations Res., 1970, 18, pp. 300-305. Zbl0195.21201MR263435
  14. 14. A. L. SOYSTER, B. LEV and Di TOOF, Conservative linear programming with mixed multiple objectives, Omega, 1977, 5 (2), pp. 193-205. 
  15. 15. I. M. STANCU-MINASIAN, Stochastic Programming with Multiple Objective Functions, Ed. Academiei Romane and D. Reidel Publishing Company, Dordrecht, 1984. Zbl0554.90069MR785571
  16. 16. I. M. STANCU-MINASIAN and S. TIGAN, The minimum-risk approach to special problems of mathematical programing. The distribution function of the optimal value, Rev. Anal. Numér. Théor. Approx., 1984, 13 (2), pp. 175-187. Zbl0567.90089MR797980
  17. 17. I. M. STANCU-MINASIAN and S. TIGAN, The minimum risk approach to max-min bilinear programming, An. Stiint Univ. "Al. I. Cuza" Iasi, Sect. I-a Math. 1985, (N. S.), 31 (2), pp. 205-209. Zbl0628.90074MR858062
  18. 18. I. M. STANCU-MINASIAN and S. TIGAN, The stochastic linear-fractional max-min problem, Itinerant Seminar on Functional Equations, Approximation and Convexity, (Cluj-Napoca, 1987), 275-280, Preprint 87-6, Univ "Babes-Bolyai", Cluj-Napoca, 1987. Zbl0658.90070MR993545
  19. 19. I. M. STANCU-MINASIAN and S. TIGAN, Criteriul riscului minim in programarea stochastica, Lucrarile Sesiunii Stiintifice a Centrului de Calcul al Universitatii Bucuresti, 20-21 februarie 1987, pp. 392-397. 
  20. 20. I. M. STANCU-MINASIAN and S. TIGAN, On some fractional programming models occurring in minimum-risk problems, in: Generalized Convexity and Fractional Programming with Economic Applications, A. CAMBINI, E. CASTAGNOLI, L. MARTEIN, P. MAZZOLENI and S. SCHAIBLE (eds.), Proceedings of the International Workshop on "Generalized Concavity, Fractional Programming and Economie Applications" held at the University of Pisa, Italy, May 30 - June 1, 1988. Lecture Notes in Economics and Mathematical Systems 345, Springer-Verlag, 1990, pp. 295-324. Zbl0706.90056MR1117941
  21. 21. I. M . STANCU-MINASIAN and S. TIGAN, Generalized pseudofractional max-min problem, Itinerant Seminar on Functional Equations, Approximation and Convexity, (Cluj-Napoca, 1988), pp. 295-302, Preprint 88-6, Univ. "Babes-Bolyai", Cluj-Napoca, 1988. Zbl0655.90083MR993586
  22. 22. I. M. STANCU-MINASIAN and S. TIGAN, Multiobjective mathematical programming with inexact data, R. SLOWINSKI and J. TEGHEM (eds.), Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer Academic Publishers, 1990, pp. 395-418. Zbl0728.90075MR1113723
  23. 23. S. TIGAN, On the max-min nonlinear fractional problem, Rev. Anal Numér. Théor. Approx., 1980, 9 (2), pp.283-288. Zbl0474.90077MR651784
  24. 24. S. TIGAN, A parametrical method for max-min nonlinear fractional problems, Itinerant Seminar on Functional Equations, Approximation and Convexity, (Cluj-Napoca, 1983), pp. 175-184, Preprint, 83-2, Univ. "Babes-Bolyai", Cluj-Napoca, 1983. Zbl0532.90088MR750517
  25. 25. S. TIGAN, A quasimonotonic max-min programming problem with linked linear constraints, Itinerant Seminar on Functional Equations, Equations, Approximation and Convexity, (Cluj-Napoca, 1986), pp.279-284, Preprint 86-7,Univ. "Babes-Bolyai", Cluj-Napoca, 1986. Zbl0611.49005MR750517
  26. 26. S. TIGAN, Numerical methods for solving some max-min pseudo-fractional prroblems, Proceedings of the Second Symposium of Mathematics and its Applications, Timisoara October 30-31, 1987, Polytechnical institute Timisoara (Romania), 1988, pp. 93-97. Zbl0672.65035MR1006007
  27. 27. S. TIGAN, On some procedures for solving fractional max-min problems, Rev. Anal. Numér. Théor. Approx., 1988, 17 (1), pp.73-91. Zbl0652.90094MR985851
  28. 28. S. TIGAN, On a quasimonotonic max-min problem, Rev. Anal. Numér. Théor. Approx., 1990, 19 (4), pp.85-91. Zbl0727.90062MR1159782
  29. 29. S. TIGAN and I. M. STANCU-MINASIAN, The stochastic max-min problem, Cahiers Centre Études Rech. Opér., 1985, 27 (3-4), pp. 153-158. Zbl0579.90074MR833566
  30. 30. S. TIGAN and I. M. STANCU-MINASIAN, On a bicriterion max-min fractional problem, Rev. Anal Numér. Théor. Approx., 1991, 20 (1-2), pp. 117-125. Zbl0753.90064MR1172182
  31. 31. P. WOLFE, Determinateness of polyhedral games, in Linear Inequalities and Related Systems, Eds. H. W. KUHN, A. W. TUCKER, Princeton University Press, Princeton, 1956. Zbl0072.37703MR81802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.