Continuous time linear-fractional programming. The minimum-risk approach
I. M. Stancu-Minasian; Stefan Tigan
RAIRO - Operations Research - Recherche Opérationnelle (2000)
- Volume: 34, Issue: 4, page 397-409
- ISSN: 0399-0559
Access Full Article
topHow to cite
topStancu-Minasian, I. M., and Tigan, Stefan. "Continuous time linear-fractional programming. The minimum-risk approach." RAIRO - Operations Research - Recherche Opérationnelle 34.4 (2000): 397-409. <http://eudml.org/doc/105227>.
@article{Stancu2000,
author = {Stancu-Minasian, I. M., Tigan, Stefan},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {stochastic continuous time linear-fractional programming; minimum-risk problem},
language = {eng},
number = {4},
pages = {397-409},
publisher = {EDP-Sciences},
title = {Continuous time linear-fractional programming. The minimum-risk approach},
url = {http://eudml.org/doc/105227},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Stancu-Minasian, I. M.
AU - Tigan, Stefan
TI - Continuous time linear-fractional programming. The minimum-risk approach
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 397
EP - 409
LA - eng
KW - stochastic continuous time linear-fractional programming; minimum-risk problem
UR - http://eudml.org/doc/105227
ER -
References
top- 1. E.J. ANDERSON and A.B. PHILPOTT, On the solution of a class of continuous linear programs. SIAM J. Control Optim. 32 (1994) 1289-1296. Zbl0812.90114MR1288251
- 2. K.M. ANSTREICHER, Generation of feasible descent directions in continuous-time linear programming, Tech. Report SOL 83-18. Department of Operations Research, Stanford University, Stanford, CA (1983).
- 3. R. BELLMAN, Bottleneck problems and dynamic programming. Proc. Nat Acad. Sci. 39 (1953) 947-951. Zbl0053.27903MR61808
- 4. R. BELLMAN, Dynamic Programming. Princeton University Press, Princeton, NJ (1957). Zbl1205.90002MR90477
- 5. B. BEREANU, On stochastic linear programming, I: Distribution problems: A single random variable. Rev. Roumaine Math. Pures Appl. 8 (1963) 683-697. Zbl0137.38101MR177806
- 6. B. BEREANU, Programme de risque minimal en programmation linaire stochastique. C. R. Acad. Sci. Paris 259 (1964) 981-983. Zbl0123.37301MR167333
- 7. E.P. BODO and M.A. HANSON, A class of continuous time programming problems. J. Optim. Theory Appl. 24 (1978) 243-263. Zbl0349.90082MR489895
- 8. R.N. BUIE, J. ABRHAM, Numerical solutions to continuous linear programming problems. Oper. Res. 17 (1973) 107-117. Zbl0264.90027MR429103
- 9. A. CHARNES, W.W. COOPER, Deterministic equivalents for optimizing and satisfying under chance constraints. Oper. Res. 11 (1963) 18-39. Zbl0117.15403MR153482
- 10. W. DINKELBACH, On nonlinear fractional programming. Management Sci. 13 (1967) 492-498. Zbl0152.18402MR242488
- 11. W.P. DREWS, A simplex-like algorithm for continuous-time linear optimal control problems, in Optimization Methods for Resource Allocation, edited by R.W. Cottle and J. Krarup. Crane Russak and Co. Inc., New York (1974) 309-322. MR370311
- 12. W.H. FARR and M.A. HANSON, Continuous time programming with nonlinear time-delayed constraints. J. Math. Anal. Appl. 46 (1974) 41-61. Zbl0277.90073MR356892
- 13. M.A. HANSON and B. MOND, A class of continuous convex programming problems. J. Math. Anal. Appl. 22 (1968) 427-437. Zbl0184.44503MR226941
- 14. R J. HARTBERGER, Representation extended to continuous time, in Optimization Methods for Resource Allocation, edited by R.W. Cottle and J. Krarup, Crane Russak and Co. Inc., New York (1974) 297-307. MR370310
- 15. B. JOHANNESSON and M.A. HANSON, On the form of the linear continuous time programming problem and a conjecture by Tyndall. J. Math. Anal. Appl. 111 (1985) 236-242. Zbl0585.90092MR808675
- 16. B. JOHANNESSON and M.A. HANSON, A generalization of basic feasible solutions to continuous time programming, FSU Statistics Report M-598. The Florida State University, Department of Statistics, Tallahassee, Fla., 32306 (1981).
- 17. A.F. PEROLD, Fundamentals of a continuous time simplex method,, Tech. Report SOL 78-26. Department of Opérations Research, Stanford University, Stanford, CA (1978).
- 18. M. PULLAN, An algorithm for a class of continuous linear programs. SIAM J. Control Optim. 31 (1993) 1558-1577. Zbl0833.90124MR1242216
- 19. M.C. PULLAN, Forms of optimal solutions for separated continuous linear programs. SIAM J. Control Optim. 33 (1995) 1952-1977. Zbl0861.49027MR1358103
- 20. R.G. SEGERS, A generalised function setting for dynamic optimal control problems, in Optimization Methods for Resource Allocation, edited by R.W. Cottle and J. Krarup. Crane Russak and Co. Inc., New York (1974) 279-296. MR370309
- 21. C. SINGH, Continuous time programming with set-inclusive constraints and objective set. J. Math. Anal. Appl. 91 (1983) 367-375. Zbl0507.49013MR690877
- 22. C. SINGH and M. KIRAN, Continuous time matrix programming. J. Math. Anal. Appl. 173 (1993) 280-291. Zbl0773.90063MR1216761
- 23. I.M. STANCU-MINASIAN, Stochastic Programming with Multiple Objective Functions. Editura Academiei Române, Bucuresti and D. Reidel Publishing Company, Dordrecht, Boston, Lancester (1984). Zbl0554.90069MR459619
- 24. I.M. STANCU-MINASIAN, Metode de rezolvare a problemelor de programare fractionara. Editura Academiei Romane, Bucuresti (1992). Zbl0911.90319MR1253982
- 25. I.M. STANCU-MINASIAN, Fractional Programming. Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht/Boston/London (1997). Zbl0899.90155MR1472981
- 26. I.M. STANCU-MINASIAN and S. TIGAN, The minimum-risk approach to special problems of mathematical programming. The distribution function of the optimal value. Rev. Anal. Numér. Théor. Approx. 13 (1984) 175-187. Zbl0567.90089MR797980
- 27. I.M. STANCU-MINASIAN and S. TIGAN, The minimum-risk approach to max-min bilinear programming. An. Stiint. Univ. Al. I. Cuza lasi Sect. I a Mat. 31 (1985) 205-209. Zbl0628.90074MR858062
- 28. I.M. STANCU-MINASIAN and S. TIGAN, A stochastic approach to some linear fractional goal programming problems. Kybernetika (Praha) 24 (1988) 139-149. Zbl0653.90052MR942381
- 29. I.M. STANCU-MINASIAN and S. TIGAN, On some fractional programming models occuring in minimum-risk problems, in Generalized Convexity and Fractional Programming with Economic Applications, edited by A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Proceedings of the International Workshop on "Generalized Convexity and Fractional Programming with Economic Applications" held at the University of Pisa, Italy, May 30 - June 1, 1988. Springer Verlag, Lecture Notes in Econom. and Math. Systems 345 (1990) 295-324. Zbl0706.90056MR1117941
- 30. I.M. STANCU-MINASIAN and S. TIGAN, On some methods for solving fractional programming problems with inexact data. Stud. Cerc. Mat. 45 (1993) 517-532. Zbl0805.90103MR1683123
- 31. S. TIGAN, On a method for fractional optimization problems. Application to stochastic optimization problems, in Proc. of the Computer Science Conference. Svékesfehérvar, Hungary (1973) 351-355.
- 32. S. TIGAN, On some procedure for solving fractional max-min problems. Rev. Anal. Numér. Théor. Approx. 17 (1988) 73-91. Zbl0652.90094MR985851
- 33. S. TIGAN and I.M. STANCU-MINASIAN, The minimum-risk approach for continuous time linear-fractional programming, Report No. 84. Universita di Pisa, Dipartimento di Statistica e Matematica Applicata All'Economia, Pisa (1994). Zbl0804.90117
- 34. S. TIGAN and I.M. STANCU-MINASIAN, Methods for solving stochastic bilinear fractional max-min problems. RAIRO Oper. Res. 30 (1996) 81-98. Zbl0857.90097MR1399986
- 35. W.F. TYNDALL, A duality theorem for a class of continuous linear programming problems. SIAM J. Appl. Math. 13 (1965) 644-666. Zbl0171.40701MR191640
- 36. W.F. TYNDALL, On two duality theorems for continuous programming problems. 7. Math. Anal. Appl. 31 (1970) 6-14. Zbl0176.49802MR261955
- 37. G.J. ZALMAI, Duality for a class of continuous-time homogeneous fractional programming problems. Z. Oper. Res. Ser. A-B 30 (1986) 43-48. Zbl0604.90127MR845550
- 38. G.J. ZALMAI, Optimality conditions and duality models for a class of nonsmooth constrained fractional optimal control problems. J. Math. Anal. Appl. 210 (1997) 114-149. Zbl0883.49015MR1449513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.