Continuous time linear-fractional programming. The minimum-risk approach

I. M. Stancu-Minasian; Stefan Tigan

RAIRO - Operations Research - Recherche Opérationnelle (2000)

  • Volume: 34, Issue: 4, page 397-409
  • ISSN: 0399-0559

How to cite

top

Stancu-Minasian, I. M., and Tigan, Stefan. "Continuous time linear-fractional programming. The minimum-risk approach." RAIRO - Operations Research - Recherche Opérationnelle 34.4 (2000): 397-409. <http://eudml.org/doc/105227>.

@article{Stancu2000,
author = {Stancu-Minasian, I. M., Tigan, Stefan},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {stochastic continuous time linear-fractional programming; minimum-risk problem},
language = {eng},
number = {4},
pages = {397-409},
publisher = {EDP-Sciences},
title = {Continuous time linear-fractional programming. The minimum-risk approach},
url = {http://eudml.org/doc/105227},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Stancu-Minasian, I. M.
AU - Tigan, Stefan
TI - Continuous time linear-fractional programming. The minimum-risk approach
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 397
EP - 409
LA - eng
KW - stochastic continuous time linear-fractional programming; minimum-risk problem
UR - http://eudml.org/doc/105227
ER -

References

top
  1. 1. E.J. ANDERSON and A.B. PHILPOTT, On the solution of a class of continuous linear programs. SIAM J. Control Optim. 32 (1994) 1289-1296. Zbl0812.90114MR1288251
  2. 2. K.M. ANSTREICHER, Generation of feasible descent directions in continuous-time linear programming, Tech. Report SOL 83-18. Department of Operations Research, Stanford University, Stanford, CA (1983). 
  3. 3. R. BELLMAN, Bottleneck problems and dynamic programming. Proc. Nat Acad. Sci. 39 (1953) 947-951. Zbl0053.27903MR61808
  4. 4. R. BELLMAN, Dynamic Programming. Princeton University Press, Princeton, NJ (1957). Zbl1205.90002MR90477
  5. 5. B. BEREANU, On stochastic linear programming, I: Distribution problems: A single random variable. Rev. Roumaine Math. Pures Appl. 8 (1963) 683-697. Zbl0137.38101MR177806
  6. 6. B. BEREANU, Programme de risque minimal en programmation linaire stochastique. C. R. Acad. Sci. Paris 259 (1964) 981-983. Zbl0123.37301MR167333
  7. 7. E.P. BODO and M.A. HANSON, A class of continuous time programming problems. J. Optim. Theory Appl. 24 (1978) 243-263. Zbl0349.90082MR489895
  8. 8. R.N. BUIE, J. ABRHAM, Numerical solutions to continuous linear programming problems. Oper. Res. 17 (1973) 107-117. Zbl0264.90027MR429103
  9. 9. A. CHARNES, W.W. COOPER, Deterministic equivalents for optimizing and satisfying under chance constraints. Oper. Res. 11 (1963) 18-39. Zbl0117.15403MR153482
  10. 10. W. DINKELBACH, On nonlinear fractional programming. Management Sci. 13 (1967) 492-498. Zbl0152.18402MR242488
  11. 11. W.P. DREWS, A simplex-like algorithm for continuous-time linear optimal control problems, in Optimization Methods for Resource Allocation, edited by R.W. Cottle and J. Krarup. Crane Russak and Co. Inc., New York (1974) 309-322. MR370311
  12. 12. W.H. FARR and M.A. HANSON, Continuous time programming with nonlinear time-delayed constraints. J. Math. Anal. Appl. 46 (1974) 41-61. Zbl0277.90073MR356892
  13. 13. M.A. HANSON and B. MOND, A class of continuous convex programming problems. J. Math. Anal. Appl. 22 (1968) 427-437. Zbl0184.44503MR226941
  14. 14. R J. HARTBERGER, Representation extended to continuous time, in Optimization Methods for Resource Allocation, edited by R.W. Cottle and J. Krarup, Crane Russak and Co. Inc., New York (1974) 297-307. MR370310
  15. 15. B. JOHANNESSON and M.A. HANSON, On the form of the linear continuous time programming problem and a conjecture by Tyndall. J. Math. Anal. Appl. 111 (1985) 236-242. Zbl0585.90092MR808675
  16. 16. B. JOHANNESSON and M.A. HANSON, A generalization of basic feasible solutions to continuous time programming, FSU Statistics Report M-598. The Florida State University, Department of Statistics, Tallahassee, Fla., 32306 (1981). 
  17. 17. A.F. PEROLD, Fundamentals of a continuous time simplex method,, Tech. Report SOL 78-26. Department of Opérations Research, Stanford University, Stanford, CA (1978). 
  18. 18. M. PULLAN, An algorithm for a class of continuous linear programs. SIAM J. Control Optim. 31 (1993) 1558-1577. Zbl0833.90124MR1242216
  19. 19. M.C. PULLAN, Forms of optimal solutions for separated continuous linear programs. SIAM J. Control Optim. 33 (1995) 1952-1977. Zbl0861.49027MR1358103
  20. 20. R.G. SEGERS, A generalised function setting for dynamic optimal control problems, in Optimization Methods for Resource Allocation, edited by R.W. Cottle and J. Krarup. Crane Russak and Co. Inc., New York (1974) 279-296. MR370309
  21. 21. C. SINGH, Continuous time programming with set-inclusive constraints and objective set. J. Math. Anal. Appl. 91 (1983) 367-375. Zbl0507.49013MR690877
  22. 22. C. SINGH and M. KIRAN, Continuous time matrix programming. J. Math. Anal. Appl. 173 (1993) 280-291. Zbl0773.90063MR1216761
  23. 23. I.M. STANCU-MINASIAN, Stochastic Programming with Multiple Objective Functions. Editura Academiei Române, Bucuresti and D. Reidel Publishing Company, Dordrecht, Boston, Lancester (1984). Zbl0554.90069MR459619
  24. 24. I.M. STANCU-MINASIAN, Metode de rezolvare a problemelor de programare fractionara. Editura Academiei Romane, Bucuresti (1992). Zbl0911.90319MR1253982
  25. 25. I.M. STANCU-MINASIAN, Fractional Programming. Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht/Boston/London (1997). Zbl0899.90155MR1472981
  26. 26. I.M. STANCU-MINASIAN and S. TIGAN, The minimum-risk approach to special problems of mathematical programming. The distribution function of the optimal value. Rev. Anal. Numér. Théor. Approx. 13 (1984) 175-187. Zbl0567.90089MR797980
  27. 27. I.M. STANCU-MINASIAN and S. TIGAN, The minimum-risk approach to max-min bilinear programming. An. Stiint. Univ. Al. I. Cuza lasi Sect. I a Mat. 31 (1985) 205-209. Zbl0628.90074MR858062
  28. 28. I.M. STANCU-MINASIAN and S. TIGAN, A stochastic approach to some linear fractional goal programming problems. Kybernetika (Praha) 24 (1988) 139-149. Zbl0653.90052MR942381
  29. 29. I.M. STANCU-MINASIAN and S. TIGAN, On some fractional programming models occuring in minimum-risk problems, in Generalized Convexity and Fractional Programming with Economic Applications, edited by A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Proceedings of the International Workshop on "Generalized Convexity and Fractional Programming with Economic Applications" held at the University of Pisa, Italy, May 30 - June 1, 1988. Springer Verlag, Lecture Notes in Econom. and Math. Systems 345 (1990) 295-324. Zbl0706.90056MR1117941
  30. 30. I.M. STANCU-MINASIAN and S. TIGAN, On some methods for solving fractional programming problems with inexact data. Stud. Cerc. Mat. 45 (1993) 517-532. Zbl0805.90103MR1683123
  31. 31. S. TIGAN, On a method for fractional optimization problems. Application to stochastic optimization problems, in Proc. of the Computer Science Conference. Svékesfehérvar, Hungary (1973) 351-355. 
  32. 32. S. TIGAN, On some procedure for solving fractional max-min problems. Rev. Anal. Numér. Théor. Approx. 17 (1988) 73-91. Zbl0652.90094MR985851
  33. 33. S. TIGAN and I.M. STANCU-MINASIAN, The minimum-risk approach for continuous time linear-fractional programming, Report No. 84. Universita di Pisa, Dipartimento di Statistica e Matematica Applicata All'Economia, Pisa (1994). Zbl0804.90117
  34. 34. S. TIGAN and I.M. STANCU-MINASIAN, Methods for solving stochastic bilinear fractional max-min problems. RAIRO Oper. Res. 30 (1996) 81-98. Zbl0857.90097MR1399986
  35. 35. W.F. TYNDALL, A duality theorem for a class of continuous linear programming problems. SIAM J. Appl. Math. 13 (1965) 644-666. Zbl0171.40701MR191640
  36. 36. W.F. TYNDALL, On two duality theorems for continuous programming problems. 7. Math. Anal. Appl. 31 (1970) 6-14. Zbl0176.49802MR261955
  37. 37. G.J. ZALMAI, Duality for a class of continuous-time homogeneous fractional programming problems. Z. Oper. Res. Ser. A-B 30 (1986) 43-48. Zbl0604.90127MR845550
  38. 38. G.J. ZALMAI, Optimality conditions and duality models for a class of nonsmooth constrained fractional optimal control problems. J. Math. Anal. Appl. 210 (1997) 114-149. Zbl0883.49015MR1449513

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.