The random linear bottleneck assignment problem

U. Pferschy

RAIRO - Operations Research - Recherche Opérationnelle (1996)

  • Volume: 30, Issue: 2, page 127-142
  • ISSN: 0399-0559

How to cite

top

Pferschy, U.. "The random linear bottleneck assignment problem." RAIRO - Operations Research - Recherche Opérationnelle 30.2 (1996): 127-142. <http://eudml.org/doc/105124>.

@article{Pferschy1996,
author = {Pferschy, U.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {random bottleneck assignment; average case analysis; random graphs; linear bottleneck assignment problem},
language = {eng},
number = {2},
pages = {127-142},
publisher = {EDP-Sciences},
title = {The random linear bottleneck assignment problem},
url = {http://eudml.org/doc/105124},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Pferschy, U.
TI - The random linear bottleneck assignment problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1996
PB - EDP-Sciences
VL - 30
IS - 2
SP - 127
EP - 142
LA - eng
KW - random bottleneck assignment; average case analysis; random graphs; linear bottleneck assignment problem
UR - http://eudml.org/doc/105124
ER -

References

top
  1. 1. M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical functions, Dover Publications, New York, 1965. Zbl0171.38503
  2. 2. B. BOLLOBÁS, Random Graphs, Academic Press, 1985. Zbl0567.05042MR809996
  3. 3. B. BOLLOBÁS and A. THOMASON, Random graphs of small order, Random Graphs'83, Annals of Discrete Math., 1985, 28, pp. 47-97. Zbl0588.05040MR860586
  4. 4. R. E. BURKARD and U. DERIGS, Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, 1980, 184. Zbl0436.90069MR610241
  5. 5. U. DERIGS, The shortest augmenting path method for solving assignment problems, Annals of Operations Research, 1985, 4, pp. 57-102. MR948014
  6. 6. U. DERIGS, Programming in networks and graphs, Springer Lectures Notes in Economics and Mathematical Systems, 1988, 300. Zbl0658.90031MR1117224
  7. 7. P. ERDÖS and A. RÉNYI, On random matrices, Publ. Math. Inst. Hungar. Acad. Sci., 1964, 8, pp. 455-461. Zbl0133.26003MR167496
  8. 8. J. B. G. FRENK, M. VAN HOUWENINGE and A. H. G. RINNOOY KAN, Order statistics and the linear assignment problem, Report 8609/A, Econometric Institute, Erasmus University, Rotterdam, The Netherlands, 1986. Zbl0636.62008
  9. 9. H. N. GABOW and R. E. TARJAN, Algorithms for two bottleneck optimization problems, J. of Algorithms, 1988, 9, pp. 411-417. Zbl0653.90087MR955149
  10. 10. J. E. HOPCROFT and R. M. KARP, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput, 1973, 2, pp. 225-231. Zbl0266.05114MR337699
  11. 11. R. M. KARP, An algorithm to solve the m x n assignment problem in expected time O (mn log n), Networks, 1980, 10, pp. 143-152. Zbl0441.68076MR569006
  12. 12. R. M. KARP, An upper bound on the expected cost of an optimal assignment, Technical report, Computer Sc. Div., Univ. of California, Berkeley, 1984. Zbl0639.90066
  13. 13. S. LANG, Complex Analysis, Springer, 1985. Zbl0562.30001MR788885
  14. 14. A. J. LAZARUS, The assignment problem with uniform (0, 1) cost matrix, Master's thesis, Department of Mathematics, Princeton University, 1979. 
  15. 15. B. OLIN, Asymptotic properties of random assignment problems. PhD-thesis, Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm, 1992. MR2714678
  16. 16. E. M. PALMER, Graphical Evolution, J. Wiley & Sons, 1985. Zbl0566.05002MR795795
  17. 17. D. W. WALKUP, On the expected value of a random assignment problem, SIAM J. Comput., 1979, 8, pp. 440-442. Zbl0413.68062MR539262
  18. 18. D. W. WALKUP, Matchings in random regular bipartite digraphs, Discrete Mathematics, 1980, 31, pp. 59-64. Zbl0438.05031MR578061

NotesEmbed ?

top

You must be logged in to post comments.