Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique n + 1 -dimensionnel

Hassimiou Diallo[1]

  • [1] Ecole Normale Supérieure Laboratoire de Mathématiques Département des Sciences et Technologie 08 BP 10 Abidjan CÔTE D’IVOIRE

Annales mathématiques Blaise Pascal (2005)

  • Volume: 12, Issue: 2, page 245-258
  • ISSN: 1259-1734

Abstract

top
A flag on a manifold M is an increasing sequence of foliations 1 , , p on this manifold, where for each i , dim i = i . The aim of this paper is to etablish that any flag of riemannian foliations 𝒟 = 1 , , p on a compact and connected manifold, lifts on the bundle of transverse direct orthonormal frames of p to a flag of transversally parallelizable foliations. This result permits us to obtain a classification of riemannian flags of a n + 1 -dimensional compact manifold for which the dimension of the structural Lie algebra of the flow is equal to n or n - 1 .

How to cite

top

Diallo, Hassimiou. "Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique $n+1$-dimensionnel." Annales mathématiques Blaise Pascal 12.2 (2005): 245-258. <http://eudml.org/doc/10519>.

@article{Diallo2005,
affiliation = {Ecole Normale Supérieure Laboratoire de Mathématiques Département des Sciences et Technologie 08 BP 10 Abidjan CÔTE D’IVOIRE},
author = {Diallo, Hassimiou},
journal = {Annales mathématiques Blaise Pascal},
keywords = {feuilletages; feuilletages riemanniens; drapeaux riemanniens; drapeaux de Lie; foliation; flag; Riemannian flag; -dimensional hyperbolic torus},
language = {fre},
month = {7},
number = {2},
pages = {245-258},
publisher = {Annales mathématiques Blaise Pascal},
title = {Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique $n+1$-dimensionnel},
url = {http://eudml.org/doc/10519},
volume = {12},
year = {2005},
}

TY - JOUR
AU - Diallo, Hassimiou
TI - Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique $n+1$-dimensionnel
JO - Annales mathématiques Blaise Pascal
DA - 2005/7//
PB - Annales mathématiques Blaise Pascal
VL - 12
IS - 2
SP - 245
EP - 258
LA - fre
KW - feuilletages; feuilletages riemanniens; drapeaux riemanniens; drapeaux de Lie; foliation; flag; Riemannian flag; -dimensional hyperbolic torus
UR - http://eudml.org/doc/10519
ER -

References

top
  1. A. El Kacimi Alaoui, M. Nicolau, A class of C stable foliations, Ergod. Th. and Dynam. Sys. 13 (1993), 667-704 Zbl0801.58038MR1257030
  2. R. Almeida, P. Molino, Flots Riemanniens sur les 4-variétés compactes, Tôhoku Mathematical Journal 38 (1986), 313-326 Zbl0603.57017MR843815
  3. B Bossoto, H Diallo, Sur les drapeaux de feuilletages riemanniens, JP Journal of Geometry and Topology, University of Allahabad, INDIA 2 (2002), 281-288 MR2110299
  4. H. Diallo, Sur les drapeaux de Lie, Afrika Mathematika 13 (2002), 75-86 Zbl1044.57010MR1924534
  5. E. Fédida, Feuilletages du plan. Feuilletages de Lie, (1973) Zbl0267.57019
  6. P. Molino, Géométrie globale des feuilletages riemanniens, Proc. Kon. Nederland Akad Ser. A 85 (1982), 45-76 Zbl0516.57016MR653455
  7. Y Carrière, Flots riemanniens, Structures transverses des feuilletages, 116 (1984), 31-52 Zbl0548.58033MR755161

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.