Displaying similar documents to “Relèvement d’un drapeau riemannien et drapeaux de Lie du tore hyperbolique n + 1 -dimensionnel”

Sur les feuilletages des variétés fibrées

Hamidou Dathe, Cédric Tarquini (2008)

Annales mathématiques Blaise Pascal

Similarity:

Nous construisons un feuilletage exotique de classe C 1 sur tout fibré hyperbolique de genre 1 . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.

Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières

Guy Casale (2006)

Annales de l’institut Fourier

Similarity:

Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce 𝒟 -groupoïde de Lie un invariant biméromorphe  : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un...

Cohomologie de dolbeault le long des feuilles de certains feuilletages complexes

Aziz El Kacimi Alaoui, Jihène Slimène (2010)

Annales de l’institut Fourier

Similarity:

La cohomologie de Dolbeault feuilletée mesure l’obstruction à résoudre le problème de Cauchy-Riemann le long des feuilles d’un feuilletage complexe. En utilisant des méthodes de cohomologie des groupes, nous calculons cette cohomologie pour deux classes de feuilletages : i) le feuilletage complexe affine de Reeb de dimension (complexe) 2 sur la variété de Hopf de dimension 5 ; ii) les feuilletages complexes sur le tore hyperbolique (fibration en tores de dimension n au-dessus d’un cercle...

Persistance des sous-variétés à bord et à coins normalement dilatées

Pierre Berger (2011)

Annales de l’institut Fourier

Similarity:

On se propose de montrer que les variétés à bord et plus généralement à coins, normalement dilatées par un endomorphisme sont persistantes en tant que stratifications a -régulières. Ce résultat sera démontré en classe C s , pour s 1 . On donne aussi un exemple simple d’une sous-variété à bord normalement dilatée mais qui n’est pas persistante en tant que sous-variété différentiable.

Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple

Michaël Bulois (2009)

Annales de l’institut Fourier

Similarity:

Soit θ une involution de l’algèbre de Lie semi-simple de dimension finie 𝔤 et 𝔤 = 𝔨 𝔭 la décomposition de Cartan associée. La variété commutante nilpotente de l’algèbre de Lie symétrique ( 𝔤 , θ ) est formée des paires d’éléments nilpotents ( x , y ) de 𝔭 tels que [ x , y ] = 0 . Il est conjecturé que cette variété est équidimensionnelle et que ses composantes irréductibles sont indexées par les orbites d’éléments 𝔭 -distingués. Cette conjecture a été démontrée par A. Premet dans le cas ( 𝔤 × 𝔤 , θ ) avec θ ( x , y ) = ( y , x ) . Dans ce travail, nous...