Prescribing Q -curvature on higher dimensional spheres

Khalil El Mehdi[1]

  • [1] Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA

Annales mathématiques Blaise Pascal (2005)

  • Volume: 12, Issue: 2, page 259-295
  • ISSN: 1259-1734

Abstract

top
We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.

How to cite

top

El Mehdi, Khalil. "Prescribing $Q$-curvature on higher dimensional spheres." Annales mathématiques Blaise Pascal 12.2 (2005): 259-295. <http://eudml.org/doc/10520>.

@article{ElMehdi2005,
abstract = {We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.},
affiliation = {Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA},
author = {El Mehdi, Khalil},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Variational problems; lack of compactness; $Q$ curvature; critical points at infinity; Q curvature},
language = {eng},
month = {7},
number = {2},
pages = {259-295},
publisher = {Annales mathématiques Blaise Pascal},
title = {Prescribing $Q$-curvature on higher dimensional spheres},
url = {http://eudml.org/doc/10520},
volume = {12},
year = {2005},
}

TY - JOUR
AU - El Mehdi, Khalil
TI - Prescribing $Q$-curvature on higher dimensional spheres
JO - Annales mathématiques Blaise Pascal
DA - 2005/7//
PB - Annales mathématiques Blaise Pascal
VL - 12
IS - 2
SP - 259
EP - 295
AB - We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.
LA - eng
KW - Variational problems; lack of compactness; $Q$ curvature; critical points at infinity; Q curvature
UR - http://eudml.org/doc/10520
ER -

References

top
  1. T. Aubin, A. Bahri, Une hypothèse de topologie algebrique pour le problème de la courbure scalaire prescrite, J Math. Pures Appl. 76 (1997), 843-850 Zbl0916.58041MR1489940
  2. T. Aubin, Some nonlinear problems in differential geometry, (1997), Springer-Verlag, New York 
  3. A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294 Zbl0649.35033MR929280
  4. A. Bahri, P. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non linéaire 8 (1991), 561-649 Zbl0745.34034MR1145561
  5. A. Bahri, Critical point at infinity in some variational problems, (1989), Pitman Res. Notes Math Ser 182, Longman Sci. Tech. Harlow Zbl0676.58021MR1019828
  6. A. Bahri, An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. Journal 81 (1996), 323-466 Zbl0856.53028MR1395407
  7. M. Ben Ayed, Y. Chen, H. Chtioui, M. Hammami, On the prescribed scalar curvature problem on 4- manifolds, Duke Math. J. 84 (1996), 633-677 Zbl0862.53034MR1408540
  8. M. Ben Ayed, K. El Mehdi, The Paneitz curvature problem on lower dimensional spheres, Preprint The Abdus Salam ICTP, Trieste, Italy 48 (2003) Zbl1170.35394MR2290452
  9. M. Ben Ayed, K. El Mehdi, Existence of conformal metrics on spheres with prescribed Paneitz curvature, Manuscripta Math 114 (2004), 211-228 Zbl1067.53021MR2067794
  10. M. Ben Ayed, M. Hammami, Critical points at infinity in a fourth order elliptic problem with limiting exponent, Nonlinear Anal. TMA 59 (2004), 891-916 Zbl1081.35027MR2096367
  11. T. P. Branson, S. A. Chang, P. C. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys. 149 (1992), 241-262 Zbl0761.58053MR1186028
  12. T. P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985), 293-345 Zbl0596.53009MR832360
  13. T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), 199-291 Zbl0643.58036MR904819
  14. H. Brezis, J.M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), 21-56 Zbl0584.49024MR784102
  15. S. A. Chang, M. J. Gursky, P. C. Yang, Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math. 121 (1999), 215-257 Zbl0921.35032MR1680337
  16. S. A. Chang, J. Qing, P. C. Yang, Compactification for a class of conformally flat 4-manifolds, Invent. Math. 142 (2000), 65-93 Zbl0990.53026MR1784799
  17. S. A. Chang, J. Qing, P. C. Yang, On the Chern-Gauss-Bonnet integral for conformal metrics on R4, Duke Math. J. 103 (2000), 523-544 Zbl0971.53028MR1763657
  18. S. A. Chang, P. C. Yang, On a fourth order curvature invariant, Spectral problems in Geometry and Arithmetic, Contemporary Math. 237 (1999), 9-28 Zbl0982.53035
  19. S. A. Chang, On Paneitz operator - fourth order differential operator in conformal geometry, Harmonic Analysis and PDE; Essays in Honor of A. P. Calderon, Editors: M. Christ, C. Kenig and C. Sadorsky; Chicago Lectures in Mathematics Chapter 8 (1999), 127-150 Zbl0982.53036
  20. H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds, Adv. Nonlinear Stud. 3 (2003), 457-469 Zbl1051.53031MR2017242
  21. Z. Djadli, E. Hebey, M. Ledoux, Paneitz-type operators and applications, Duke Math. J. 104 (2000), 129-169 Zbl0998.58009MR1769728
  22. Z. Djadli, A. Malchiodi, M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, Commun. Contemp. Math. 4 (2002), 357-408 Zbl1023.58020MR1918751
  23. Z. Djadli, A. Malchiodi, M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow up analysis and applications, Annali della Scuola Normale Sup. di Pisa 5 (2002), 387-434 Zbl1150.53012MR1991145
  24. P. Esposito, F. Robert, Mountain pass critical points for Paneitz-Branson operators, Calc. Var. Partial Differential Equations 15 (2002), 493-517 Zbl1221.35128MR1942129
  25. V. Felli, Existence of conformal metrics on Sn with prescribed fourth-order invariant, Adv. Differential Equations 7 (2002), 47-76 Zbl1054.53061MR1867704
  26. M. J. Gursky, The Weyl functional, de Rham cohomology and Khaler-Einstein metrics, Ann. of Math. 148 (1998), 315-337 Zbl0949.53025MR1652920
  27. C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Commentari Mathematici Helvetici 73 (1998), 206-231 Zbl0933.35057MR1611691
  28. P. L. Lions, The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1 (1985), I: 165-201; II: 45-121 Zbl0704.49006MR850686
  29. J. Milnor, Lectures on h-Cobordism Theorem, (1965), Princeton University Press, Princeton Zbl0161.20302MR190942
  30. S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, (1983) Zbl1145.53053
  31. M. Struwe, A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z. 187 (1984), 511-517 Zbl0535.35025MR760051
  32. J. Wei, X. Xu, On conformal deformations of metrics on Sn, J. Funct. Anal. 157 (1998), 292-325 Zbl0924.58120MR1637945
  33. X. Xu, P. C. Yang, Positivity of Paneitz operators, Discrete Contin. Dyn. Syst. 7 (2001), 329-342 Zbl1032.58018MR1808405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.