Prescribing -curvature on higher dimensional spheres
- [1] Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA
Annales mathématiques Blaise Pascal (2005)
- Volume: 12, Issue: 2, page 259-295
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topEl Mehdi, Khalil. "Prescribing $Q$-curvature on higher dimensional spheres." Annales mathématiques Blaise Pascal 12.2 (2005): 259-295. <http://eudml.org/doc/10520>.
@article{ElMehdi2005,
abstract = {We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.},
affiliation = {Université de Nouakchott Faculté des Sciences et Techniques BP 5026, Nouakchott MAURITANIA},
author = {El Mehdi, Khalil},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Variational problems; lack of compactness; $Q$ curvature; critical points at infinity; Q curvature},
language = {eng},
month = {7},
number = {2},
pages = {259-295},
publisher = {Annales mathématiques Blaise Pascal},
title = {Prescribing $Q$-curvature on higher dimensional spheres},
url = {http://eudml.org/doc/10520},
volume = {12},
year = {2005},
}
TY - JOUR
AU - El Mehdi, Khalil
TI - Prescribing $Q$-curvature on higher dimensional spheres
JO - Annales mathématiques Blaise Pascal
DA - 2005/7//
PB - Annales mathématiques Blaise Pascal
VL - 12
IS - 2
SP - 259
EP - 295
AB - We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.
LA - eng
KW - Variational problems; lack of compactness; $Q$ curvature; critical points at infinity; Q curvature
UR - http://eudml.org/doc/10520
ER -
References
top- T. Aubin, A. Bahri, Une hypothèse de topologie algebrique pour le problème de la courbure scalaire prescrite, J Math. Pures Appl. 76 (1997), 843-850 Zbl0916.58041MR1489940
- T. Aubin, Some nonlinear problems in differential geometry, (1997), Springer-Verlag, New York
- A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294 Zbl0649.35033MR929280
- A. Bahri, P. Rabinowitz, Periodic orbits of hamiltonian systems of three body type, Ann. Inst. H. Poincaré Anal. Non linéaire 8 (1991), 561-649 Zbl0745.34034MR1145561
- A. Bahri, Critical point at infinity in some variational problems, (1989), Pitman Res. Notes Math Ser 182, Longman Sci. Tech. Harlow Zbl0676.58021MR1019828
- A. Bahri, An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. Journal 81 (1996), 323-466 Zbl0856.53028MR1395407
- M. Ben Ayed, Y. Chen, H. Chtioui, M. Hammami, On the prescribed scalar curvature problem on 4- manifolds, Duke Math. J. 84 (1996), 633-677 Zbl0862.53034MR1408540
- M. Ben Ayed, K. El Mehdi, The Paneitz curvature problem on lower dimensional spheres, Preprint The Abdus Salam ICTP, Trieste, Italy 48 (2003) Zbl1170.35394MR2290452
- M. Ben Ayed, K. El Mehdi, Existence of conformal metrics on spheres with prescribed Paneitz curvature, Manuscripta Math 114 (2004), 211-228 Zbl1067.53021MR2067794
- M. Ben Ayed, M. Hammami, Critical points at infinity in a fourth order elliptic problem with limiting exponent, Nonlinear Anal. TMA 59 (2004), 891-916 Zbl1081.35027MR2096367
- T. P. Branson, S. A. Chang, P. C. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys. 149 (1992), 241-262 Zbl0761.58053MR1186028
- T. P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985), 293-345 Zbl0596.53009MR832360
- T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), 199-291 Zbl0643.58036MR904819
- H. Brezis, J.M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), 21-56 Zbl0584.49024MR784102
- S. A. Chang, M. J. Gursky, P. C. Yang, Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math. 121 (1999), 215-257 Zbl0921.35032MR1680337
- S. A. Chang, J. Qing, P. C. Yang, Compactification for a class of conformally flat 4-manifolds, Invent. Math. 142 (2000), 65-93 Zbl0990.53026MR1784799
- S. A. Chang, J. Qing, P. C. Yang, On the Chern-Gauss-Bonnet integral for conformal metrics on R4, Duke Math. J. 103 (2000), 523-544 Zbl0971.53028MR1763657
- S. A. Chang, P. C. Yang, On a fourth order curvature invariant, Spectral problems in Geometry and Arithmetic, Contemporary Math. 237 (1999), 9-28 Zbl0982.53035
- S. A. Chang, On Paneitz operator - fourth order differential operator in conformal geometry, Harmonic Analysis and PDE; Essays in Honor of A. P. Calderon, Editors: M. Christ, C. Kenig and C. Sadorsky; Chicago Lectures in Mathematics Chapter 8 (1999), 127-150 Zbl0982.53036
- H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds, Adv. Nonlinear Stud. 3 (2003), 457-469 Zbl1051.53031MR2017242
- Z. Djadli, E. Hebey, M. Ledoux, Paneitz-type operators and applications, Duke Math. J. 104 (2000), 129-169 Zbl0998.58009MR1769728
- Z. Djadli, A. Malchiodi, M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, Commun. Contemp. Math. 4 (2002), 357-408 Zbl1023.58020MR1918751
- Z. Djadli, A. Malchiodi, M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow up analysis and applications, Annali della Scuola Normale Sup. di Pisa 5 (2002), 387-434 Zbl1150.53012MR1991145
- P. Esposito, F. Robert, Mountain pass critical points for Paneitz-Branson operators, Calc. Var. Partial Differential Equations 15 (2002), 493-517 Zbl1221.35128MR1942129
- V. Felli, Existence of conformal metrics on Sn with prescribed fourth-order invariant, Adv. Differential Equations 7 (2002), 47-76 Zbl1054.53061MR1867704
- M. J. Gursky, The Weyl functional, de Rham cohomology and Khaler-Einstein metrics, Ann. of Math. 148 (1998), 315-337 Zbl0949.53025MR1652920
- C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Commentari Mathematici Helvetici 73 (1998), 206-231 Zbl0933.35057MR1611691
- P. L. Lions, The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1 (1985), I: 165-201; II: 45-121 Zbl0704.49006MR850686
- J. Milnor, Lectures on h-Cobordism Theorem, (1965), Princeton University Press, Princeton Zbl0161.20302MR190942
- S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, (1983) Zbl1145.53053
- M. Struwe, A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z. 187 (1984), 511-517 Zbl0535.35025MR760051
- J. Wei, X. Xu, On conformal deformations of metrics on Sn, J. Funct. Anal. 157 (1998), 292-325 Zbl0924.58120MR1637945
- X. Xu, P. C. Yang, Positivity of Paneitz operators, Discrete Contin. Dyn. Syst. 7 (2001), 329-342 Zbl1032.58018MR1808405
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.