Periodic solutions of hamiltonian systems of 3-body type
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 6, page 561-649
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBahri, A., and Rabinowitz, P. H.. "Periodic solutions of hamiltonian systems of 3-body type." Annales de l'I.H.P. Analyse non linéaire 8.6 (1991): 561-649. <http://eudml.org/doc/78265>.
@article{Bahri1991,
author = {Bahri, A., Rabinowitz, P. H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {periodic solutions; Hamiltonian systems; functional; critical points},
language = {eng},
number = {6},
pages = {561-649},
publisher = {Gauthier-Villars},
title = {Periodic solutions of hamiltonian systems of 3-body type},
url = {http://eudml.org/doc/78265},
volume = {8},
year = {1991},
}
TY - JOUR
AU - Bahri, A.
AU - Rabinowitz, P. H.
TI - Periodic solutions of hamiltonian systems of 3-body type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 6
SP - 561
EP - 649
LA - eng
KW - periodic solutions; Hamiltonian systems; functional; critical points
UR - http://eudml.org/doc/78265
ER -
References
top- [1] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Libr. Albert Blanchard, Paris, 1987.
- [2] A. Bahri and P.H. Rabinowitz, A Minimax Method for a Class of Hamiltonian Systems with Singular Potentials, J. Functional Anal., Vol. 82, 1989, pp. 412-428. Zbl0681.70018MR987301
- [3] A. Ambrosetti and V. Coti-Zelati, Critical Points with Lack of Compactness and Applications to Singular Hamiltonian Systems (to appear). Zbl0642.58017MR1281984
- [4] M. Degiovanni, F. Giannoni and A. Marino, Periodic Solutions of Dynamical Systems with Newtonian Type Potentials, in Periodic Solutions of Hamiltonian Systems and Related Topics, P. H. RABINOWITZ et al., Vol. 29, pp. 111-115, NATO ASI Series, Reidel, Dordrecht, 1987. Zbl0632.34038MR920613
- [5] W.B. Gordon, Conservative Dynamical Systems Involving Strong Forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
- [6] C. Greco, Periodic Solutions of a Class of Singular Hamiltonian Systems, Nonlinear Analysis: TMA, Vol. 12, 1988, pp. 259-270. Zbl0648.34048MR928560
- [7] A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital., Vol. 11, 1975, pp. 1-32. Zbl0311.58006MR418150
- [8] A. Bahri, Thèse de Doctorat d'État, Univ. P. and M. Curie, Paris, 1981.
- [9] A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math, Vol. 152, 1984, pp. 143-197. Zbl0592.70027MR741053
- [10] Borsuk, Shape Theory, Zbl0317.55006
- [11] D. Sullivan and M. Vigué-Poirier, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., Vol. 11, 1976, pp. 633-644. Zbl0361.53058MR455028
- [12] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Heidelberg, 1972. Zbl0234.55001MR415602
- [13] P.H. Rabinowitz, Periodic Solutions for Some Forced Singular Hamiltonian Systems, (to appear), Festschift in honor of Jürgen Moser. Zbl0790.70019MR1039360
- [14] C.C. Conley, Isolated Invariant Sets and the Morse Index, C.B.M.S. Regional Conference Series in Math, # 38, Am. Math. Soc., Providence R. I., 1978. Zbl0397.34056MR511133
- [15] A. Bahri, (to appear).
- [16] M.W. Hirsch, Differential Topology, Springer-Verlag, 1976. Zbl0356.57001MR448362
- [17] E. Spanier, Algebraic Topology, McGraw-Hill, 1966. Zbl0145.43303MR210112
- [18] W. Klingenberg, Lectures on Closed Goedesics, Springer-Verlag, 1978. Zbl0397.58018MR478069
- [19] I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré: Analyse non linéaire, Vol. 1, 1984, pp. 19-78. Zbl0537.58018MR738494
- [20] A. Bahri and B.M. D'Oonofrio, (to appear).
Citations in EuDML Documents
top- A. Bahri, P. H. Rabinowitz, Periodic solutions of some problems of 3-body type
- E. Fadell, S. Husseini, Infinite cup length in free loop spaces with an application to a problem of the N-body type
- Antonio Ambrosetti, Kazunaga Tanaka, Enzo Vitillaro, Periodic solutions with prescribed energy for some keplerian -body problems
- Dina Abuzaid, Randa Ben Mahmoud, Hichem Chtioui, Afef Rigane, Topological tools for the prescribed scalar curvature problem on S n
- Mohamed Ben Ayed, Mohameden Ould Ahmedou, Multiplicity results for the prescribed scalar curvature on low spheres
- Vivina Barutello, Simone Secchi, Morse index properties of colliding solutions to the N-body problem
- Randa Ben Mahmoud, Hichem Chtioui, Existence results for the prescribed Scalar curvature on
- Khalil El Mehdi, Prescribing -curvature on higher dimensional spheres
- Claude Viterbo, Orbites périodiques dans le problème des trois corps
- Pengfei Yuan, Shiqing Zhang, New Periodic Solutions for N-Body Problems with Weak Force Potentials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.