Second order optimality conditions for differentiable multiobjective problems

Giancarlo Bigi; Marco Castellani

RAIRO - Operations Research - Recherche Opérationnelle (2000)

  • Volume: 34, Issue: 4, page 411-426
  • ISSN: 0399-0559

How to cite

top

Bigi, Giancarlo, and Castellani, Marco. "Second order optimality conditions for differentiable multiobjective problems." RAIRO - Operations Research - Recherche Opérationnelle 34.4 (2000): 411-426. <http://eudml.org/doc/105228>.

@article{Bigi2000,
author = {Bigi, Giancarlo, Castellani, Marco},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {4},
pages = {411-426},
publisher = {EDP-Sciences},
title = {Second order optimality conditions for differentiable multiobjective problems},
url = {http://eudml.org/doc/105228},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Bigi, Giancarlo
AU - Castellani, Marco
TI - Second order optimality conditions for differentiable multiobjective problems
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 411
EP - 426
LA - eng
UR - http://eudml.org/doc/105228
ER -

References

top
  1. 1. J. ABADIE, On the Kuhn-Tucker Theorem, in Nonlinear programming, edited by J. Abadie. North Holland, Amsterdam (1967) 21-36. Zbl0183.22803MR218116
  2. 2. B. AGHEZZAF and M. HACHIMI, Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102 (1999) 37-50. Zbl1039.90062MR1702841
  3. 3. J.P. AUBIN and H. FRANKOWSKA, Set-valued analysis. Birkhäuser, Boston (1990). Zbl1168.49014MR1048347
  4. 4. A. BEN-TAL, Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31 (1980) 143-165. Zbl0416.90062MR600379
  5. 5. G. BIGI and M. PAPPALARDO, Regularity conditions for the linear separation of sets. J. Optim. Theory Appl. 99 (1998) 533-540. Zbl0911.90297MR1657049
  6. 6. B.D. CRAVEN, Nonsmooth multiobjective programming, Numer. Funct. Anal. Optim. 10 (1989) 49-64. Zbl0645.90076MR978802
  7. 7. F. GIANNESSI, G. MASTROEN and L. PELLEGRINI, On the theory of vector optimization and variational inequalities. Image space analysis and separation, in Vector variational inequalities and vector equilibria, edited by F. Giannessi. Kluwer, Dordrecht (2000) 141-201. Zbl0985.49005MR1789120
  8. 8. M. GUIGNARD, Generalized Kuhn-Tucker conditions for mathernatical programming problems in a Banach space. SIAM J. Control 7 ( 1969 ) 232-241. Zbl0182.53101MR252042
  9. 9. J. JAHN, Mathernatical vector optimization in partially ordered linear spaces. Peter Lang, Frankfurt (1986). Zbl0578.90048MR830661
  10. 10. H. KAWASAKI, Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualification. J. Optim, Theory Appl. 57 (1988) 253-264. Zbl0621.90074MR938874
  11. 11. P. KANNIAPPAN, Necessary conditions for optimality of nondifferentiable convex multiobjective programming. J. Optim. Theory Appl. 40 (1983) 167-174. Zbl0488.49007MR703314
  12. 12. J.G. LIN, Maximal vectors and multi-objective optimization. J. Optim, Theory Appl. 18 (1976) 41-64. Zbl0298.90056MR418945
  13. 13. T. MAEDA, Constraint qualifications in multiobjective optimization problems: Differentiable case. J. Optim, Theory Appl. 80 (1994) 483-500. Zbl0797.90083MR1265172
  14. 14. A.A.K. MAJUMDAR, Optimality conditions in differentiable multiobjective programming. J. Optim. Theory Appl. 92 (1997) 419-427. Zbl0886.90122MR1430022
  15. 15. O.L. MANGASARIAN, Nonlinear programming. Mc Graw-Hill, New York (1969). Zbl0527.00013MR252038
  16. 16. I. MARUSCIAC, On Fritz John type optimality criterion in multi-objective optimization. Anal. Numér. Théor. Approx, 11 (1982) 109-114. Zbl0501.90081MR692476
  17. 17. M. MINAMI, Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space. J. Optim, Theory Appl. 41 (1983). 451-461. Zbl0502.90076MR728312
  18. 18. J.P. PENOT, Optimality conditions in mathematical programming and composite optimization. Math. Programming 67 (1994) 225-245. Zbl0828.90137MR1305567
  19. 19. V. PREDA, On some sufficient optimality conditions in multiobjective differentiable programming. Kybernetica (Prague) 28 (1992) 263-270. Zbl0784.90070MR1183618
  20. 20. Y. SAWARAGI, H. NAKAYAMA and T. TANINOTheory of multiobjective optimization. Academic, Orlando (1985). Zbl0566.90053MR807529
  21. 21. C. SINGH, Optimality conditions in multiobjective differentiable programming. J. Optim, Theory Appl. 53 (1987) 115-123. Zbl0593.90071MR889214
  22. 22. S.Y. WANG, A note on optimality conditions in multiobjective programming. Systems Sci. Math. Sci. 1 (1988) 184-190. Zbl0727.90065MR1009139
  23. 23. S.Y. WANG, Second order necessary and sufficient conditions in multiobjective programming. Numer. Funct Anal, Optim, 12 (1991) 237-252. Zbl0764.90076MR1125051
  24. 24. S.Y. WANG and Z.F. Li, Scalarization and Lagrange duality in multiobjective optimization. Optimization 26 (1992) 315-324. Zbl0817.90100MR1236615
  25. 25. S.Y. WANG and F.M. YANG, A gap between multiobjective optimization and scalar optimization. J. Optim. Theory Appl. 68 (1991) 389-391. Zbl0696.90062MR1091499
  26. 26. D.E. WARD, Calculus for parabolic second-order derivatives. Set-Valued Anal. 1 (1993) 213-246. Zbl0797.58014MR1249264
  27. 27. D.E. WARD, A chain rule for parabolic second-order epiderivatives. Optimization 28 (1994) 223-236. Zbl0816.49010MR1275978
  28. 28. L. ZEMIN, The optimality conditions of differentiable vector optimization problems. J. Math. Anal. Appl. 201 (1996) 35-43. Zbl0851.90105MR1397884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.