On some sufficient optimality conditions in multiobjective differentiable programming

Vasile C. Preda

Kybernetika (1992)

  • Volume: 28, Issue: 4, page 263-270
  • ISSN: 0023-5954

How to cite

top

Preda, Vasile C.. "On some sufficient optimality conditions in multiobjective differentiable programming." Kybernetika 28.4 (1992): 263-270. <http://eudml.org/doc/27967>.

@article{Preda1992,
author = {Preda, Vasile C.},
journal = {Kybernetika},
keywords = {sufficient optimality conditions; multiobjective differentiable programming; generalized -convexity},
language = {eng},
number = {4},
pages = {263-270},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On some sufficient optimality conditions in multiobjective differentiable programming},
url = {http://eudml.org/doc/27967},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Preda, Vasile C.
TI - On some sufficient optimality conditions in multiobjective differentiable programming
JO - Kybernetika
PY - 1992
PB - Institute of Information Theory and Automation AS CR
VL - 28
IS - 4
SP - 263
EP - 270
LA - eng
KW - sufficient optimality conditions; multiobjective differentiable programming; generalized -convexity
UR - http://eudml.org/doc/27967
ER -

References

top
  1. A. Ben-Israel, B. Mond, What is invexity?, J. Austral. Math. Soc. 28 (1986), 1-9. (1986) Zbl0603.90119MR0846778
  2. M. A. Hanson, On sufficiency on the Kuhn-Tucker conditions, J. Math. Annal. Appl. 80 (1981), 545 - 550. (1981) MR0614849
  3. M.A. Hanson, B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci. 3 (1982), 25-32. (1982) Zbl0475.90069MR0713163
  4. I. Jahn, Scalarization in vector optimization, Math. Programming 29 (1984), 203-218. (1984) Zbl0539.90093MR0745408
  5. J.G. Lin, Maximal vector and multiobjective optimization, J. Optim. Theory Appl. 18 (1976), 41-64. (1976) MR0418945
  6. D.T. Luc, Scalarization of vector optimization problems, J. Optim. Theory Appl. 55 (1987), 85- 102. (1987) Zbl0622.90083MR0915679
  7. I. Marusciac, On Fritz John type optimality criterion in multiobjective optimization, Anal. Numer. Theor. Approx. 11 (1982), 109-114. (1982) MR0692476
  8. B. Mond, Generalized convexity in mathematical programming, Bull. Austral. Math. Soc. 27 (1983), 185-202. (1983) Zbl0502.90066MR0707968
  9. A. Pascoletti, P. Serafini, Scalarizing vector optimization problems, J. Optim. Theory Appl. 42 (1984), 499-524. (1984) Zbl0505.90072MR0739432
  10. C. Singh, Duality theory in multiobjective differentiable programming, J. Inform. Optim. Sci. 9 (1988), 231-240. (1988) MR1000585
  11. C. Singh, Optimality conditions in multiobjective differentiable programming, J. Optim. Theory Appl. 53 (1987), 115-123. (1987) Zbl0593.90071MR0889214
  12. C. Singh, M.A. Hanson, Saddlepoint theory for nondifferentiable multiobjective fractional programming, J. Optim. Theory Appl. 51 (1986), 41-48. (1986) Zbl0593.90077MR0836228
  13. W. Standler, A survey of multicriteria optimization or the vector maximum problem, Part I: 1776-1960. J. Optim. Theory Appl. 29 (1979), 1-52. (1960) MR0545552
  14. A. Takayama, Mathematical Economics, The Dryden Press, Hinsdale, Illinois 1974. (1974) Zbl0313.90008MR0832684
  15. A.W. Tucker, Dual systems of homogeneous linear relations, In: Linear Inequalities and Related Systems (H.W. Kuhn, A.W. Tucker, eds.). Princeton University Press, Princeton, New Jersey 1956. (1956) Zbl0072.37503MR0089112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.