Finding the principal points of a random variable
Emilio Carrizosa; E. Conde; A. Castaño[1]; D. Romero-Morales[2]
- [1] Departamento de Matemáticas, E.U. Empresariales, Universidad de Cádiz, C/ Por Vera, N. 54, Jerez de la Frontera, Cádiz, Spain.
- [2] Faculty of Economics and Business Administration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
RAIRO - Operations Research - Recherche Opérationnelle (2001)
- Volume: 35, Issue: 3, page 315-328
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topCarrizosa, Emilio, et al. "Finding the principal points of a random variable." RAIRO - Operations Research - Recherche Opérationnelle 35.3 (2001): 315-328. <http://eudml.org/doc/105249>.
@article{Carrizosa2001,
abstract = {The $p$-principal points of a random variable $X$ with finite second moment are those $p$ points in $\mathbb \{R\}$ minimizing the expected squared distance from $X$ to the closest point. Although the determination of principal points involves in general the resolution of a multiextremal optimization problem, existing procedures in the literature provide just a local optimum. In this paper we show that standard Global Optimization techniques can be applied.},
affiliation = {Departamento de Matemáticas, E.U. Empresariales, Universidad de Cádiz, C/ Por Vera, N. 54, Jerez de la Frontera, Cádiz, Spain.; Faculty of Economics and Business Administration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.},
author = {Carrizosa, Emilio, Conde, E., Castaño, A., Romero-Morales, D.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {principal points; d.c. functions; branch and bound},
language = {eng},
number = {3},
pages = {315-328},
publisher = {EDP-Sciences},
title = {Finding the principal points of a random variable},
url = {http://eudml.org/doc/105249},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Carrizosa, Emilio
AU - Conde, E.
AU - Castaño, A.
AU - Romero-Morales, D.
TI - Finding the principal points of a random variable
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 3
SP - 315
EP - 328
AB - The $p$-principal points of a random variable $X$ with finite second moment are those $p$ points in $\mathbb {R}$ minimizing the expected squared distance from $X$ to the closest point. Although the determination of principal points involves in general the resolution of a multiextremal optimization problem, existing procedures in the literature provide just a local optimum. In this paper we show that standard Global Optimization techniques can be applied.
LA - eng
KW - principal points; d.c. functions; branch and bound
UR - http://eudml.org/doc/105249
ER -
References
top- [1] E. Carrizosa, E. Conde, A. Castaño, I. Espinosa, I. González and D. Romero–Morales, Puntos principales: Un problema de Optimización Global en Estadística, Presented at XXII Congreso Nacional de Estadística e Investigación Operativa. Sevilla (1995).
- [2] D.R. Cox, A use of complex probabilities in the theory of stochastic processes, in Proc. of the Cambridge Philosophical Society, Vol. 51 (1955) 313-319. Zbl0066.37703MR68767
- [3] B. Flury, Principal points. Biometrika 77 (1990) 33-41. Zbl0691.62053MR1049406
- [4] B. Flury and T. Tarpey, Representing a Large Collection of Curves: A Case for Principal Points. Amer. Statist. 47 (1993) 304-306.
- [5] R. Fourer, D.M. Gay and B.W. Kernigham, AMPL, A modeling language for Mathematical Programming. The Scientific Press, San Francisco (1993).
- [6] E. Gelenbe and R.R. Muntz, Probabilistic Models of Computer Systems-Part I. Acta Inform. 7 (1976) 35-60. Zbl0343.60066MR426473
- [7] R. Horst, An Algorithm for Nonconvex Programming Problems. Math. Programming 10 (1976) 312-321. Zbl0337.90062MR424248
- [8] R. Horst and H. Tuy, Global Optimization. Deterministic Approaches. Springer-Verlag, Berlin (1993). Zbl0704.90057MR1274246
- [9] S.P. Lloyd, Least Squares Quantization in PCM. IEEE Trans. Inform. Theory 28 (1982) 129-137. Zbl0504.94015MR651807
- [10] L. Li and B. Flury, Uniqueness of principal points for univariate distributions. Statist. Probab. Lett. 25 (1995) 323-327. Zbl0837.62017MR1363232
- [11] K. Pötzelberger and K. Felsenstein, An asymptotic result on principal points for univariate distribution. Optimization 28 (1994) 397-406. Zbl0813.62012MR1275992
- [12] S. Rowe, An Algorithm for Computing Principal Points with Respect to a Loss Function in the Unidimensional Case. Statist. Comput. 6 (1997) 187-190.
- [13] T. Tarpey, Two principal points of symmetric, strongly unimodal distributions. Statist. Probab. Lett. 20 (1994) 253-257. Zbl0799.62019MR1294603
- [14] T. Tarpey, Principal points and self-consistent points of symmetric multivariate distributions. J. Multivariate Anal. 53 (1995) 39-51. Zbl0820.62047MR1333126
- [15] T. Tarpey, L. Li and B. Flury, Principal points and self-consistent points of elliptical distributions. Ann. Statist. 23 (1995) 103-112. Zbl0822.62042MR1331658
- [16] A. Zoppè, Principal points of univariate continuous distributions. Statist. Comput. 5 (1995) 127-132.
- [17] A. Zoppè, On Uniqueness and Symmetry of self-consistent points of univariate continuous distribution. J. Classification 14 (1997) 147-158. Zbl0891.62005MR1449745
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.