Sur l’équilibre fort selon Berge

Moussa Larbani; Rabia Nessah

RAIRO - Operations Research - Recherche Opérationnelle (2001)

  • Volume: 35, Issue: 4, page 439-451
  • ISSN: 0399-0559

Abstract

top
In this paper we study the main properties of the strong Berge equilibrium, then we prove a theorem of its existence based on the Ky Fan inequality and finally, we provide an algorithm for its determination.

How to cite

top

Larbani, Moussa, and Nessah, Rabia. "Sur l’équilibre fort selon Berge." RAIRO - Operations Research - Recherche Opérationnelle 35.4 (2001): 439-451. <http://eudml.org/doc/105256>.

@article{Larbani2001,
abstract = {Dans cet article nous étudions les propriétés essentielles de l’équilibre fort selon Berge (EFSB) pour les jeux à $n$ personnes, ensuite nous prouvons son existence en utilisant l’inégalité de Ky Fan et donnons un procédé adéquat pour sa recherche pratique.},
author = {Larbani, Moussa, Nessah, Rabia},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {jeux; équilibre; inégalité de ky Fan; non-cooperative game; Nash equilibrium; strong equilibrium},
language = {fre},
number = {4},
pages = {439-451},
publisher = {EDP-Sciences},
title = {Sur l’équilibre fort selon Berge},
url = {http://eudml.org/doc/105256},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Larbani, Moussa
AU - Nessah, Rabia
TI - Sur l’équilibre fort selon Berge
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 439
EP - 451
AB - Dans cet article nous étudions les propriétés essentielles de l’équilibre fort selon Berge (EFSB) pour les jeux à $n$ personnes, ensuite nous prouvons son existence en utilisant l’inégalité de Ky Fan et donnons un procédé adéquat pour sa recherche pratique.
LA - fre
KW - jeux; équilibre; inégalité de ky Fan; non-cooperative game; Nash equilibrium; strong equilibrium
UR - http://eudml.org/doc/105256
ER -

References

top
  1. [1] R. Aumann, Acceptable Points in General Cooperative n - Person Games, in Contributions to the Theory of Games 4. Princeton University Press (1959). Zbl0085.13005MR104521
  2. [2] C. Berge, Théorie général des jeux à n - personnes. Gauthier Villars, Paris (1957). Zbl0082.34702MR99259
  3. [3] K. Fan, Minimax Inequality and Application, in Inequality, Vol. 3, edited by O. Shisha. Academic Press, New York (1972). Zbl0302.49019MR341029
  4. [4] J.C. Harsanyi, Oddness of the Number of Equilibrium Points : A new proof. Int. J. Game Theory. 2 (1973) 235-250. Zbl0274.90085MR526058
  5. [5] H. Moulin, Théorie des jeux pour l’économie et la politique. Herman, Paris (1981). 
  6. [6] R.B. Myerson, Refinements of the Nash Equilibrium Concept. Int. J. Game Theory 7 (1978) 73-80. Zbl0392.90093MR507586
  7. [7] J.F. Nash, Non-Cooperative Games. Ann. Maths 54 (1951) 286-295. Zbl0045.08202MR43432
  8. [8] G. Owen, Game Theory. Academic Press, London (1995). Zbl0544.90103MR1355082
  9. [9] R. Selten, Reexamination of the Perfectness Concept for Equilibrium Point in Extensive Games. Int. J. Game Theory 4 (1975) 25-55. Zbl0312.90072MR395896
  10. [10] E. Van Damme, Stability and Perfection of Nash Equilibria. Springer-Verlag Berlin Heidelberg (1987). Zbl0696.90087MR917062
  11. [11] Wu Wen–Tsün and Jiang Jia–He, Essential Equilibrium Point of n -Person Non-cooperative Games. Sci. Sinica 11 (1962) 1307-1322. Zbl0141.36103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.