Parallel Machine Scheduling with Uncertain Communication Delays
Aziz Moukrim; Eric Sanlaville; Frédéric Guinand
RAIRO - Operations Research (2010)
- Volume: 37, Issue: 1, page 1-16
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Bampis, F. Guinand and D. Trystram, Some Models for Scheduling Parallel Programs with Communication Delays. Discrete Appl. Math.51 (1997) 5-24.
- Ph. Chrétienne, A polynomial algorithm to optimally schedule tasks on a virtual distributed system under tree-like precedence constraints. EJOR43 (1989) 225-230.
- Ph. Chrétienne and C. Picouleau, Scheduling with communication delays: a survey, in Scheduling Theory and its Applications, edited by Ph. Chrétienne, E.G. Coffman, J.K. Lenstra and Z. Liu. John Wiley Ltd. (1995).
- E.G. Coffman Jr. and R.L. Graham, Optimal scheduling for two-processor systems. Acta Informatica1 (1972) 200-213.
- G.L. Djordjevic and M.B. Tosic, A heuristic for scheduling task graphs with communication delays onto multiprocessors. Parallel Comput.22 (1996) 1197-1214.
- G. Galambos and G.J. Woeginger, An on-line scheduling heuristic with better worst case ratio than Graham list scheduling. SIAM J. Comput.22 (1993) 349-355.
- A. Gerasoulis and T. Yang, A Comparison of Clustering Heuristics for Scheduling DAGs on Multiprocessors. J. Parallel Distributed Comput.16 (1992) 276-291.
- A. Gerasoulis and T. Yang, Application of graph scheduling techniques in parallelizing irregular scientific computation, in Parallel Algorithms for Irregular Problems: State of the Art, edited by A. Ferreira and J. Rolim. Kluwer Academic Publishers, The Netherlands (1995).
- F. Guinand and D. Trystram, Optimal scheduling of UECT trees on two processors. RAIRO: Oper. Res.34 (2000) 131-144.
- C. Hanen and A. Munier, Performance of Coffman Graham schedule in the presence of unit communication delays. Discrete Appl. Math.81 (1998) 93-108.
- J.J. Hwang, Y.C. Chow, F.D. Anger and C.Y. Lee, Scheduling precedence graphs in systems with interprocessor communication times. SIAM J. Comput.18 (1989) 244-257.
- A.W.J. Kolen, A.H.G. Rinnooy Kan, C.P.M. Van Hoesel and A.P.M. Wagelmans, Sensitivity analysis of list scheduling heuristics. Discrete Appl. Math.55 (1994) 145-162.
- P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applications. Kluwer Academic Publisher (1997).
- J.K. Lenstra, M. Veldhorst and B. Veltman, The complexity of scheduling trees with communication delays. J. Algorithms20 (1996) 157-173.
- A. Moukrim and A. Quilliot, Scheduling with communication delays and data routing in Message Passing Architectures. Springer, Lecture Notes in Comput. Sci. 1388 (1998) 438-451.
- C.H. Papadimitriou and M. Yannakakis, Towards an Architecture-Independent Analysis of Parallel Algorithms. SIAM J. Comput.19 (1990) 322-328.
- V.J. Rayward-Smith, UET scheduling with interprocessor communication delays. Discrete Appl. Math.18 (1986) 55-71.
- V. Sarkar, Partitioning and Scheduling Parallel Programs for Execution on Multiprocessors. The MIT Press (1989).
- G.C. Sih and E.A. Lee, A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans. Parallel Distributed Systems4 (1993) 279-301.
- Y.N. Sotskov, A.P.M. Wagelmans and F. Werner, On the calculation of stability radius of an optimal or an approximate schedule. Ann. O.R.83 (1998) 213-252.
- S.D. Wu, E. Byeon and R.H. Storer, A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness. Oper. Res.47 (1999) 113-124.
- T. Yang and A. Gerasoulis, List scheduling with and without communication delay. Parallel Comput.19 (1993) 1321-1344.