Geometric types of twisted knots

Mohamed Aït-Nouh[1]; Daniel Matignon[2]; Kimihiko Motegi[3]

  • [1] Department of Mathematics University of California at Santa Barbara Boston, MA 02215 USA
  • [2] CMI, UMR 6632 du CNRS Université d’Aix-Marseille I 39, rue Joliot Curie F-13453 Marseille Cedex 13 FRANCE
  • [3] Department of Mathematics Nihon University Tokyo 156-8550 JAPAN

Annales mathématiques Blaise Pascal (2006)

  • Volume: 13, Issue: 1, page 31-85
  • ISSN: 1259-1734

Abstract

top
Let K be a knot in the 3 -sphere S 3 , and Δ a disk in S 3 meeting K transversely in the interior. For non-triviality we assume that | Δ K | 2 over all isotopies of K in S 3 - Δ . Let K Δ , n ( S 3 ) be a knot obtained from K by n twistings along the disk Δ . If the original knot is unknotted in S 3 , we call K Δ , n a twisted knot. We describe for which pair ( K , Δ ) and an integer n , the twisted knot K Δ , n is a torus knot, a satellite knot or a hyperbolic knot.

How to cite

top

Aït-Nouh, Mohamed, Matignon, Daniel, and Motegi, Kimihiko. "Geometric types of twisted knots." Annales mathématiques Blaise Pascal 13.1 (2006): 31-85. <http://eudml.org/doc/10529>.

@article{Aït2006,
abstract = {Let $K$ be a knot in the $3$-sphere $S^3$, and $\Delta $ a disk in $S^3$ meeting $K$ transversely in the interior. For non-triviality we assume that $| \Delta \cap K | \ge 2$ over all isotopies of $K$ in $S^3 - \partial \Delta $. Let $K_\{\Delta , n\}$($\subset S^3$) be a knot obtained from $K$ by $n$ twistings along the disk $\Delta $. If the original knot is unknotted in $S^3$, we call $K_\{\Delta , n\}$ a twisted knot. We describe for which pair $(K, \Delta )$ and an integer $n$, the twisted knot $K_\{\Delta , n\}$ is a torus knot, a satellite knot or a hyperbolic knot.},
affiliation = {Department of Mathematics University of California at Santa Barbara Boston, MA 02215 USA; CMI, UMR 6632 du CNRS Université d’Aix-Marseille I 39, rue Joliot Curie F-13453 Marseille Cedex 13 FRANCE; Department of Mathematics Nihon University Tokyo 156-8550 JAPAN},
author = {Aït-Nouh, Mohamed, Matignon, Daniel, Motegi, Kimihiko},
journal = {Annales mathématiques Blaise Pascal},
keywords = {twisting pair; twisting number},
language = {eng},
month = {1},
number = {1},
pages = {31-85},
publisher = {Annales mathématiques Blaise Pascal},
title = {Geometric types of twisted knots},
url = {http://eudml.org/doc/10529},
volume = {13},
year = {2006},
}

TY - JOUR
AU - Aït-Nouh, Mohamed
AU - Matignon, Daniel
AU - Motegi, Kimihiko
TI - Geometric types of twisted knots
JO - Annales mathématiques Blaise Pascal
DA - 2006/1//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 1
SP - 31
EP - 85
AB - Let $K$ be a knot in the $3$-sphere $S^3$, and $\Delta $ a disk in $S^3$ meeting $K$ transversely in the interior. For non-triviality we assume that $| \Delta \cap K | \ge 2$ over all isotopies of $K$ in $S^3 - \partial \Delta $. Let $K_{\Delta , n}$($\subset S^3$) be a knot obtained from $K$ by $n$ twistings along the disk $\Delta $. If the original knot is unknotted in $S^3$, we call $K_{\Delta , n}$ a twisted knot. We describe for which pair $(K, \Delta )$ and an integer $n$, the twisted knot $K_{\Delta , n}$ is a torus knot, a satellite knot or a hyperbolic knot.
LA - eng
KW - twisting pair; twisting number
UR - http://eudml.org/doc/10529
ER -

References

top
  1. M. Aït Nouh, D. Matignon, K. Motegi, Obtaining graph knots by twisting unknots, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 321-326 Zbl1033.57003MR2016983
  2. M. Aït Nouh, D. Matignon, K. Motegi, Obtaining graph knots by twisting unknots, Topology Appl. 146-147 (2005), 105-121 Zbl1086.57008MR2107139
  3. M. Culler, J. Luecke C. McA. Gordon, P. B. Shalen, Dehn surgery on knots, Ann. Math 125 (1987), 237-300 Zbl0633.57006MR881270
  4. L. Glass, A combinatorial analog of the Poincaré Index Theorem, J. Comb. Theory Ser. B15 (1973), 264-268 Zbl0264.05112MR327558
  5. H. Goda, C. Hayashi, H-J. Song, Dehn surgeries on 2 -bridge links which yield reducible 3 -manifolds 
  6. C. Goodman-Strauss, On composite twisted unknots, Trans. Amer. Math. Soc. 349 (1997), 4429-4463 Zbl0883.57004MR1355072
  7. C.McA. Gordon, Combinatorial methods in Dehn surgery, Lectures at Knots 96 (1997), 263-290, World Scientific Publishing Co Zbl0940.57022MR1474525
  8. C.McA. Gordon, R. A. Litherland, Incompressible planar surfaces in 3 -manifolds, Topology Appl. 18 (1984), 121-144 Zbl0554.57010MR769286
  9. C.McA. Gordon, J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415 Zbl0678.57005MR965210
  10. C.McA. Gordon, J. Luecke, Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom. 4 (1995), 597-644 Zbl0865.57015MR1371211
  11. C.McA. Gordon, J. Luecke, Toroidal and boundary-reducing Dehn fillings, Topology Appl. 93 (1999), 77-90 Zbl0926.57019MR1684214
  12. C.McA. Gordon, J. Luecke, Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004), 417-485 Zbl1062.57006MR2074884
  13. C. Hayashi, K. Motegi, Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc. 349 (1997), 4465-4479 Zbl0883.57005MR1355073
  14. W. Jaco, P. B. Shalen, Seifert fibered spaces in 3 -manifolds, Mem. Amer. Math. Soc. 220 (1979) Zbl0415.57005MR539411
  15. K. Johannson, Homotopy equivalences of 3 -manifolds with boundaries, (1979), Lect.Notes in Math, Springer-Verlag Zbl0412.57007MR551744
  16. M. Kouno, K. Motegi, T. Shibuya, Twisting and knot types, J. Math. Soc. Japan 44 (1992), 199-216 Zbl0739.57003MR1154840
  17. Y. Mathieu, Unknotting, knotting by twists on disks and property (P) for knots in S 3 , Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter (1992), 93-102 Zbl0772.57012MR1177414
  18. W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 37-44 Zbl0525.57003MR721450
  19. K. Miyazaki, K. Motegi, Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom. 7 (1999), 551-582 Zbl0940.57025MR1698388
  20. J. Morgan, H. Bass, The Smith conjecture, (1984), Academic Press Zbl0599.57001MR758459
  21. K. Motegi, Knot types of satellite knots and twisted knots, Lectures at Knots 96 (1997), 579-603, World Scientific Publishing Co Zbl0914.57005MR1474519
  22. K. Motegi, T. Shibuya, Are knots obtained from a plain pattern always prime ?, Kobe J. Math. 9 (1992), 39-42 Zbl0766.57004MR1189955
  23. Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid 7 (1994), 289-305 Zbl0861.57015MR1297516
  24. D. Rolfsen, Knots and links, (1976), Publish or Perish, Berkeley, Calif. Zbl0339.55004MR515288
  25. M. Scharlemann, Unknotting-number-one knots are prime, Invent. Math. 82 (1985), 37-55 Zbl0576.57004MR808108
  26. M. Scharlemann, Producing reducible 3 -manifolds by surgery on a knot, Topology 29 (1990), 481-500 Zbl0727.57015MR1071370
  27. M. Teragaito, Composite knots trivialized by twisting, J. Knot Theory Ramifications 1 (1992), 1623-1629 Zbl0765.57010MR1194998
  28. W. P. Thurston, The geometry and topology of 3 -manifolds, (1979), Lecture notes, Princeton University 
  29. Y-Q. Wu, Dehn surgery on arborescent links, Trans. Amer. Math. Soc. 351 (1999), 2275-2294 Zbl0919.57008MR1458339

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.