Geometric types of twisted knots
Mohamed Aït-Nouh[1]; Daniel Matignon[2]; Kimihiko Motegi[3]
- [1] Department of Mathematics University of California at Santa Barbara Boston, MA 02215 USA
- [2] CMI, UMR 6632 du CNRS Université d’Aix-Marseille I 39, rue Joliot Curie F-13453 Marseille Cedex 13 FRANCE
- [3] Department of Mathematics Nihon University Tokyo 156-8550 JAPAN
Annales mathématiques Blaise Pascal (2006)
- Volume: 13, Issue: 1, page 31-85
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAït-Nouh, Mohamed, Matignon, Daniel, and Motegi, Kimihiko. "Geometric types of twisted knots." Annales mathématiques Blaise Pascal 13.1 (2006): 31-85. <http://eudml.org/doc/10529>.
@article{Aït2006,
abstract = {Let $K$ be a knot in the $3$-sphere $S^3$, and $\Delta $ a disk in $S^3$ meeting $K$ transversely in the interior. For non-triviality we assume that $| \Delta \cap K | \ge 2$ over all isotopies of $K$ in $S^3 - \partial \Delta $. Let $K_\{\Delta , n\}$($\subset S^3$) be a knot obtained from $K$ by $n$ twistings along the disk $\Delta $. If the original knot is unknotted in $S^3$, we call $K_\{\Delta , n\}$ a twisted knot. We describe for which pair $(K, \Delta )$ and an integer $n$, the twisted knot $K_\{\Delta , n\}$ is a torus knot, a satellite knot or a hyperbolic knot.},
affiliation = {Department of Mathematics University of California at Santa Barbara Boston, MA 02215 USA; CMI, UMR 6632 du CNRS Université d’Aix-Marseille I 39, rue Joliot Curie F-13453 Marseille Cedex 13 FRANCE; Department of Mathematics Nihon University Tokyo 156-8550 JAPAN},
author = {Aït-Nouh, Mohamed, Matignon, Daniel, Motegi, Kimihiko},
journal = {Annales mathématiques Blaise Pascal},
keywords = {twisting pair; twisting number},
language = {eng},
month = {1},
number = {1},
pages = {31-85},
publisher = {Annales mathématiques Blaise Pascal},
title = {Geometric types of twisted knots},
url = {http://eudml.org/doc/10529},
volume = {13},
year = {2006},
}
TY - JOUR
AU - Aït-Nouh, Mohamed
AU - Matignon, Daniel
AU - Motegi, Kimihiko
TI - Geometric types of twisted knots
JO - Annales mathématiques Blaise Pascal
DA - 2006/1//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 1
SP - 31
EP - 85
AB - Let $K$ be a knot in the $3$-sphere $S^3$, and $\Delta $ a disk in $S^3$ meeting $K$ transversely in the interior. For non-triviality we assume that $| \Delta \cap K | \ge 2$ over all isotopies of $K$ in $S^3 - \partial \Delta $. Let $K_{\Delta , n}$($\subset S^3$) be a knot obtained from $K$ by $n$ twistings along the disk $\Delta $. If the original knot is unknotted in $S^3$, we call $K_{\Delta , n}$ a twisted knot. We describe for which pair $(K, \Delta )$ and an integer $n$, the twisted knot $K_{\Delta , n}$ is a torus knot, a satellite knot or a hyperbolic knot.
LA - eng
KW - twisting pair; twisting number
UR - http://eudml.org/doc/10529
ER -
References
top- M. Aït Nouh, D. Matignon, K. Motegi, Obtaining graph knots by twisting unknots, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 321-326 Zbl1033.57003MR2016983
- M. Aït Nouh, D. Matignon, K. Motegi, Obtaining graph knots by twisting unknots, Topology Appl. 146-147 (2005), 105-121 Zbl1086.57008MR2107139
- M. Culler, J. Luecke C. McA. Gordon, P. B. Shalen, Dehn surgery on knots, Ann. Math 125 (1987), 237-300 Zbl0633.57006MR881270
- L. Glass, A combinatorial analog of the Poincaré Index Theorem, J. Comb. Theory Ser. B15 (1973), 264-268 Zbl0264.05112MR327558
- H. Goda, C. Hayashi, H-J. Song, Dehn surgeries on -bridge links which yield reducible -manifolds
- C. Goodman-Strauss, On composite twisted unknots, Trans. Amer. Math. Soc. 349 (1997), 4429-4463 Zbl0883.57004MR1355072
- C.McA. Gordon, Combinatorial methods in Dehn surgery, Lectures at Knots 96 (1997), 263-290, World Scientific Publishing Co Zbl0940.57022MR1474525
- C.McA. Gordon, R. A. Litherland, Incompressible planar surfaces in -manifolds, Topology Appl. 18 (1984), 121-144 Zbl0554.57010MR769286
- C.McA. Gordon, J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415 Zbl0678.57005MR965210
- C.McA. Gordon, J. Luecke, Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom. 4 (1995), 597-644 Zbl0865.57015MR1371211
- C.McA. Gordon, J. Luecke, Toroidal and boundary-reducing Dehn fillings, Topology Appl. 93 (1999), 77-90 Zbl0926.57019MR1684214
- C.McA. Gordon, J. Luecke, Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004), 417-485 Zbl1062.57006MR2074884
- C. Hayashi, K. Motegi, Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc. 349 (1997), 4465-4479 Zbl0883.57005MR1355073
- W. Jaco, P. B. Shalen, Seifert fibered spaces in -manifolds, Mem. Amer. Math. Soc. 220 (1979) Zbl0415.57005MR539411
- K. Johannson, Homotopy equivalences of -manifolds with boundaries, (1979), Lect.Notes in Math, Springer-Verlag Zbl0412.57007MR551744
- M. Kouno, K. Motegi, T. Shibuya, Twisting and knot types, J. Math. Soc. Japan 44 (1992), 199-216 Zbl0739.57003MR1154840
- Y. Mathieu, Unknotting, knotting by twists on disks and property (P) for knots in , Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter (1992), 93-102 Zbl0772.57012MR1177414
- W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), 37-44 Zbl0525.57003MR721450
- K. Miyazaki, K. Motegi, Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom. 7 (1999), 551-582 Zbl0940.57025MR1698388
- J. Morgan, H. Bass, The Smith conjecture, (1984), Academic Press Zbl0599.57001MR758459
- K. Motegi, Knot types of satellite knots and twisted knots, Lectures at Knots 96 (1997), 579-603, World Scientific Publishing Co Zbl0914.57005MR1474519
- K. Motegi, T. Shibuya, Are knots obtained from a plain pattern always prime ?, Kobe J. Math. 9 (1992), 39-42 Zbl0766.57004MR1189955
- Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid 7 (1994), 289-305 Zbl0861.57015MR1297516
- D. Rolfsen, Knots and links, (1976), Publish or Perish, Berkeley, Calif. Zbl0339.55004MR515288
- M. Scharlemann, Unknotting-number-one knots are prime, Invent. Math. 82 (1985), 37-55 Zbl0576.57004MR808108
- M. Scharlemann, Producing reducible -manifolds by surgery on a knot, Topology 29 (1990), 481-500 Zbl0727.57015MR1071370
- M. Teragaito, Composite knots trivialized by twisting, J. Knot Theory Ramifications 1 (1992), 1623-1629 Zbl0765.57010MR1194998
- W. P. Thurston, The geometry and topology of -manifolds, (1979), Lecture notes, Princeton University
- Y-Q. Wu, Dehn surgery on arborescent links, Trans. Amer. Math. Soc. 351 (1999), 2275-2294 Zbl0919.57008MR1458339
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.